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HOW TO CONSTRUCT CSIDH ON QUADRATIC AND TWISTED EDWARDS 

CURVES 

Abstract. In one of the famous works, an incorrect formulation and an incorrect solution of the 

implementation problem of the CSIDH algorithm on Edwards curves 
dE is discovered. A detailed 

critique of this work with a proof of the fallacy of its concept is given. Specific properties of three 

non-isomorphic classes of supersingular curves in the generalized Edwards form is considered: 

complete, quadratic, and twisted Edwards curves. Conditions for the existence of curves of all 

classes with the order 1+p  of curves over a prime field 
pF  are determined. The implementation of 

the CSIDH algorithm on isogenies of odd prime degrees based on the use of quadratic twist pairs of 

elliptic curves. To this end, the CSIDH algorithm can be construct both on complete Edwards curves 

with quadratic twist within this class, and on quadratic and twisted Edwards curves forming pairs of 

quadratic twist. In contrast to this, the authors of a well-known work are trying to prove theorems 

with statement about existing a solution within one class 
dE  of curves with a parameter d that is a 

square. The critical analysis of theorems, lemmas, and erroneous statements in this work is given. 

Theorem 2 on quadratic twist in classes of Edwards curves is proved. A modification of the CSIDH 

algorithm based on isogenies of quadratic and twisted Edwards curves is presented. To illustrate the 

correct solution of the problem, an example of Alice and Bob calculations in the secret sharing 

scheme according to the CSIDH algorithm is considered. 

 

Keywords: curve in generalized Edwards form, complete Edwards curve, twisted Edwards curve, 

quadratic Edwards curve, curve order, point order, isomorphism, isogeny, w-coordinates, square. 

 

INTRODUCTION 

The reason for writing this article was the work of Japanese scientists [1]. Our attention 

was drawn to the title of this paper, which includes the keywords CSIDH (Commutative 

Supersingular Isogeny Diffie-Hellman [2]) and Edwards curves [3, 4]. This topic intersects, in 

particular, with works [5, 6, 7] and our research [8 - 14]. 

The most interesting results in this topic, in our opinion, were obtained in [5], which offers 

the fastest today arithmetic for computing odd-degree isogenies on complete Edwards curves 

[3] using the Farasakhi-Hosseini -coordinates [6] and the theorems of [7 ]. 

Since the term "Edwards curves", first defined in [4] for all curves dE  with one parameter

d , is ambiguous (does not take into account the values of the quadratic character )(d ), the 

question arises: what kind of Edwards curves are we talking about in [1]? The authors of [1] 

removed this question with the new term "purely Edwards curves", meaning by it all curves dE  

with one parameter, except the complete Edwards curves. For them obviously 1,1)( = dd . 

The purpose of this article with a similar title [1] is a critical analysis of this work 

together with an illustration of the correct solution of the problem. 

In our classification [11, 12], such curves are called “quadratic Edwards curves” (Section 

1). Within this class of Edwards curves there are no quadratic twist pairs on which the CSIDH 
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algorithm is based. Thus, we found a contradiction already in the title of [1], which proves its 

fallacy. The purpose of this article is a critical analysis of the incorrect statements and 

conditions of the theorems in [1], a refutation of its concept, and, as a constructive, a proof and 

illustration of the correct solution of the problem.  

In [8], we proved two theorems adapting formulas of odd degree isogenies for Edwards 

curves [7] to twisted Edwards curves and to their computing in Farasakhi-Hosseini ):( ZW -

coordinates [6]. In the next paper [9], using a simple model, it was shown how the CSIDH 

algorithm works on the basis of supersingular quadratic and twisted Edwards curves connected 

as quadratic twist pairs, some estimates of the calculation cost in projective ):( ZW Farasakhi-

Hosseini coordinates were detailed. 

This article is, to a certain extent, a continuation of the previous work [9]. Supersingular 

quadratic and twisted Edwards curves with the same order ,3,21 =+= mnpN m

E
 ( n- odd) 

exist only for 8mod7p . The minimum even cofactor of the order of such curves is 8, then for 

the CSIDH algorithm with an odd  =
=

K

i iln
1

 the field modulus, we should choose .18 −= np  

In order to adapt the definitions for the arithmetic of Edwards curves isogenies and curves in 

the Weierstrass form, we use the modified point addition law [11, 12] with the change of 

coordinates yx    . 

Section 1 gives a brief overview of the properties of complete, quadratic, and twisted 

supersingular Edwards curves (SEC) [13,14]. In Section 2, specific aspects of the 

implementation of the CSIDH algorithm model on quadratic and twisted SEC are considered, 

and a modification of the algorithm [2] is given. Since all the necessary calculations in the 

CSIDH algorithm are reduced only to field operations for calculating the isogenic curve 

parameter and scalar point multiplications, it is proposed to abandon the calculation of the 

isogenic function )(R  of random point R . In section 3, we give critical analysis of theorems, 

lemmas and statements of article [1], their incorrectness and fallacy, substantiate the conclusion 

about the inconsistency of the concept and title of the article.  The implementation of the CSIDH 

algorithm in [1] (section 6.2) relies on complete Edwards curves, which does not correspond to 

the problem posed in the paper. Instead of hypothetical curves ]1[ −dE  with one parameter in 

[1], one should actually use the known twisted SEC with two parameters and other existence 

conditions. The proof of Theorem 2 on quadratic twist of curves in the generalized Edwards 

form is given. In support of our conclusions, further in Section 4, an example of Alice and Bob's 

calculations in the Diffie-Hellman secret sharing scheme on quadratic and twisted SEC is given. 

Omitting the problem of computational cost, in this paper we mainly use affine coordinates. 

 

PROPERTIES OF SUPERSINGULAR CURVES IN EDWARDS FORM 

 

Let us consider some specific properties of supersingular Edwards curves (SEC) [13, 

14]. An elliptic curve in generalized Edwards form [11] over a prime field pF is defined by 

the equation 

 

                .1,,,,1: *2222

, +=+ ddaFdaydxayxE pda                                                       (1) 

If a quadratic character 1)( −=ad , curve (1) is isomorphic to the complete Edwards curve 

[3, 4] with one parameter d  

                                       .1)(,1: 2222 −=+=+ dydxyxEd                                                        (2) 
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SECs of this class exist for 4mod3p , and their order is 4mod01+= pNE . 

Let 1)()(,1)( === daad  , then the curve (1) is isomorphic to the quadratic Edwards 

curve [11] 

                                     1,,1)(,1: 2222 =+=+ ddydxyxEd  .                                                (3) 

In contrast to (2), the parameter d  of curve (3) is a square. SEC of class (3) have an order 

8mod01+= pNE  and exist over a field pF  for 8mod1−p . For both curves (2) and (3) 

we accept a parameter 1=a , and they are called as curves with one parameter. In [4], curve (3) 

together with curve (2) are defined as Edwards curves. At the same time, the difference in the 

quadratic characters of the parameters d  leads to radically different properties of curves (2) 

and (3) [11, 12]. We discuss this below and in Section 3. 

The twisted Edwards curve was defined in [11] as a particular case of curve (1) for 
.1)()(,1)( −=== daad   

The new classification of curves in the generalized Edwards form (1) in [11, 12] divides 

them into 3 non-intersecting (non-isomorphic) classes of complete, quadratic, and twisted 

Edwards curves. This avoids the ambiguity and difficulties that arise in the still existing 

terminology, which allows the inclusion of one class of Edwards curves in another. In the 

pioneering work [4], in particular, authors define the twisted Edwards curve with two 

parameters as curve (1). As a result any curve in Edwards form can be called twisted Edwards 

curve. However, already in [4] itself, statistics are given for the number of complete, twisted 

Edwards curves and Edwards curves, which cannot be sorted out. Another example of 

ambiguous terminology is the work [1], the title of which contains the term "Edwards curves", 

but according to [4], it includes "complete Edwards curves". The question arises: what kind of 

curves are we talking about? 

The logic of classification of curves in the generalized Edwards form (1) in [11, 12] is 

simple. Since the introduction of a new parameter into the equation (1) in the Edwards form is 

necessary only in one case: at 1)()(,1)( −=== daad  , it is logical to keep the term 

“twisted Edwards curves” [11] for curves with this condition. In this case, the class "twisted 

Edwards curves" becomes unique up to isomorphism (it has no curves in other classes). Another 

such unique class is the class of “complete Edwards curves” [3, 4] with the condition

1)( −=ad . Finally, the third unique class with the condition 1)()(,1)( === daad   is 

the class of "quadratic Edwards curves". This term, proposed by us [11], is justified by the 

property 1)( =d  , which is different from the conditions of the other two classes. To a certain 

extent, it can also be justified by the term “quadratic twist”, which is exactly what the curves 

of the corresponding classes (quadratic and twisted curves) are connected. It is important that 

there are exactly three classes of curves (1), each with its own name, and no confusion. 

In the application to the CSIDH algorithm on SECs, we define a pair of quadratic and 

twisted SEC [11] as a pair of quadratic twist with parameters 

.1)(,,,1)( −==== ccddcaaad 


 (see Theorem 2 in Section 3). Since SEC exist only for 

4mod3p  [13], we can take ,,1,1,1 ddaac −=−==−=  where −da,  are the parameters 

of a quadratic curve, and respectively, −da , of a twisted curve. In other words, the transition 

from a quadratic to a twisted curve and vice versa we can define ddd EEE −−= ,1,1 . Then the 

twisted SEC equation for 8mod7p  from (1) we can written as 
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                .1)(.,1,,1: *2222

,1 =−=−−− ddFdydxyxE pd                                       (4) 

Here, the conditions for the modulus p  and order of the curve 8mod01+= pNE  are 

similar to curves (3). For 8mod7p  , of course, also 4mod3p  holds. 

 Having fixed the parameter 1−=a  and running through all admissible values of d , we 

can determine the set of cardinalities of  all 
2

3−p
 curves of each of the 3 classes of curves (1) 

(including isomorphic curves). Any twisted SEC one can reduce to the form (4). 

The order tpNE −+= 1  of an elliptic curve over a prime field pF  is determined based 

on the trace t  of the characteristic equation 02 =++ pt  of the Frobenius endomorphism, 

where for some point ).( yxP =  the Frobenius endomorphism ),()( pp yxP = . For a quadratic 

twist curve, the corresponding order will be tpN
t

E ++= 1 . An elliptic curve is supersingular 

if and only if, over any extension of a prime field pF , the trace of the Frobenius equation is 

,mod0 pt    in this case pp −=−=  ,2
 in an imaginary quadratic field [13, 15]. A pair 

of curves E  and tE is sometimes referred to ],1[ +E ]1[ −E  as two solutions of the quadratic 

Frobenius equation. In an algebraic closure pF , a supersingular curve does not contain points of 

order p . Over a prime field pF , such a curve always has order 1+= pNE  . 

So, quadratic and twisted SEC as a pair of quadratic twist have the same order 1+= pNE  

but different structure. All their points are different (except two points )1,0(  ), so isogenies of 

the same degree have different kernels. Both curves are non-cyclic with respect to points of the 

2-nd order (contain 3 points of the 2-nd order each, two of which are exceptional points 

1,2   , 
a

D
d

 
=    
 

 [4, 11]). Quadratic SEС (3), in addition, contains two exceptional points of the 

4-th order 1
1

,   .F
d

 
 =   

 
 The presence of a noncyclic subgroup of the 4-th order containing 

3 points of the 2-nd order limits the number 8 to the minimum even cofactor of the order 

)(8 oddnnNE −=  of quadratic and twisted Edwards curves [11]. In general, their order is

3,2 = mnN m

E  . The maximum order of points of these curves is .42/ nNE =  It is important 

that points of even orders are not involved in the calculations of the CSIDH algorithm (after the 

first multiplication of a random point P  of maximum order by 4, we have a point of odd order

n ). 

For the curve (1) J  -invariant equal [4, 15] 

0)(,
)(

)14(16
),(

4

322

−
−

++
= daad

daad

adda
daJ  .                         (5) 

This parameter distinguishes isogenic (with different J -invariants) and isomorphic (with equal 

J -invariants) curves. Since the J -invariant retains its value for all isomorphic curves and 

quadratic twist pairs [15], it is the same for a pair of twisted and quadratic SEC ( 1=a  ). It is 

a useful tool both in finding supersingular curves and in constructing isogeny chain graphs. One 

of the properties of the J -invariant is 
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                                                  )()( 1−= dJdJ . 

For the considered classes of SEC, the replacement 1−→ dd  gives an isomorphism, and for 

complete Edwards curves (2) it gives a quadratic twist. 

MODIFICATION OF CSIDH ALGORITHM ON QUADRATIC AND TWISTED 

EDWARDS CURVES 

The PQC CSIDH (Commutative SIDH) algorithm proposed by the authors of [2] for 

solving the same key exchange problem (SIDH), but based on isogenic mappings of 

supersingular elliptic curves as additive Abelian groups. Such a mapping over a prime field pF  

as the class group action is defined [2] and is commutative. In comparison with the well-known 

original CRS scheme (Couveignes (1997), Rostovtsev, Stolbunov (2004)) on non-supersingular 

curves, the use of isogenies of supersingular curves made it possible to substantial speed up the 

algorithm and achieve the smallest known key size (512 bits in [2]). 

Let the curve E  of order 1+= pNE  contain points of small odd orders .,...,2,1, Kili =  

Then there is an isogenic curve E of the same order as a il -degree map: ElEE i *][=→ . The 

repetition of this operation ie times we denote El ie

i *][  . The values of the isogeny exponents 

Zei   determine the length || ie  of the chain of isogenies of degree il . In [2], an interval of 

exponential values ][ mem i − is accepted ( 5=m ), which provides a security level of 128 

bits for a quantum computer attack. Negative values of the exponent mean a transition to a 

quadratic twist supersingular curve. 

The implementation of the CSIDH algorithm mainly uses fast arithmetic of Montgomery 

elliptic curves 2,232 ++= СxСxxy  containing 2 points of the 4-th order and, accordingly, 

having an order ).(41 oddnnpNE −=+=  [2]. In [5], the CSIDH algorithm implemented on 

complete SEC of the same order. In this paper, we use quadratic and twisted SEC in the CSIDH 

algorithm, which have the same speed performance as complete Edwards curves [5]. In [8] we 

proved 2 theorems for implementation such possibility. With a minimum cofactor of 8, the 

order of twisted and quadratic SEC is nNE 8=  . Thus, for these SEC classes with order

,18 +== pnNE .
1 =

=
K

i iln  the field modulus in the CSIDH algorithm we chosen as

8mod118
1

−−=  =

K

i ilp  . 

Non-interactive Diffie-Hellman key exchange includes the following steps [2]: 

1. Choice of parameters. For small odd primes il , compute  =
=

K

i iln
1

 , where the value K is 

determined by the security level (in [2] 587,74 74 == lK  ), and choose an appropriate field 

modulus 3,12
1

−=  =
mlp

K

i i

m and a starting elliptic curve 0E  . 

2. Calculation of public keys. Alice uses her private key ),..,,( 21 KA eee=  to build an isogenic 

mapping ],..,,[ 21

21
Ke

K

ee

A lll=  (class group action [2]) and calculates the isogenic curve 

0* EE AA =  as her public key. Based on the secret key B and function В , Bob performs the 
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same calculations and receives his public key 0* EE BB = . These curves are defined their 

parameters BA dd ,  up to isomorphism, which are accepted as public keys known to both parties. 

3. Sharing secrets. Here the protocol is similar to item 2 with replacements BEE →0  for 

Alice and AEE →0 for Bob. Knowing Bob's public key, Alice calculates

0** EEE BABABA == . Similar actions of Bob give a result 

0** EEE ABABAB == that coincides with the first one due to the commutatively of the 

group operation. The J -invariant of the curve )( BAAB EE   is accepted the shared secret. 

Below we present a modification of Alice's computational algorithm according to item 2 

[2] using isogenies of quadratic and twisted SEС. 

 

Algorithm 1: Evaluating the class-group action on quadratic and twisted SEC. 

 

Input: 1)(, = dEd AA   and a list of integers ),...,( 21 KA eee= . 

Output: Bd  such that BA

e

K

ee
EElll K =*],...,[ 21

21 , where 
22

,

22

, 1: yxdyxE ВАBA +=+ . 

1. While some 0ie  do 

2. Sample a random ,pFx  

3. Sеt ,1a
2222 1: yxdyxE AA +=+  if )1/()1( 22 dxx −− is a square in pF , 

4. else ,1−a
2222 1: yxdyxE AA −=− ,    

5. Let }0|{ = iaeiS . If  =S  then start over to line 2 while ,aa −  

6. Let , 
=

Si ilk and compute  ),(,]2/)1[( yxPPkpR =+ , 

7. For each Si do 

8. Compute RlkQ i ]/[  

9. If  )0,1(Q  Compute the parameter Bd  an isogeny BA EE →:  with Q=ker Set 

BA dd  , aee ii −  , 

10. Skip i in S and ilkk /  if  0=ie ,             

11. Return Аd . 

In comparison with Algorithm 2 in [2], our Algorithm 1, adapted to twisted and quadratic 

SEC, has some modifications: 

1. Checking the square in item 3 use the equation of the quadratic Edwards curve (3). 

2. With the order of the twisted Edwards curve 18 +== pnNE  with the maximum order 

nNE 42/ = of the point, to obtain a point of the order n , it is sufficient to double the random 

point twice. In item 6, this property lied’s to reducing one doubling in the scalar product of the 

point Р . 

3. Item 9 has been corrected (you cannot reset the index i  before zeroing ie in item 10). 

4. In item 9, only the parameter Bd  of the isogenic curve is calculated and the function )(R  

point R is not calculated. 

5. Updating the number ilkk /  and reset i in item10 we perform after zeroing ie . 

According to item 10, exactly || ie  isogenies we calculate for each il  until the exponent 

ie is set to zero. Depending on its sign, isogenies are calculated in the class of quadratic  
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( 0ie ) or twisted SEC )0( ie . 

The ultimate goal of the CSIDH secret sharing algorithm is to find the common curve 

parameter ABd  of curve ABE . For each step in the chain of isogenies EE → , it is only necessary 

to calculate the parameter ),( Qdd =  based on the parameters d  and the kernel Q  of the 

curve E . This calculation involves two SM (Scalar Multiplication) of random points R  and 

)1( −s recurrent doublings of points of kernel Q  . Thus, the construction and calculation of 

a sufficiently complex function )(R  is not necessary for the implementation of the CSIDH 

algorithm. Part of the calculations in the algorithm related to the calculation of the function 

)(R  can be saved and significantly speed up the algorithm. 

The construction of isogenies of odd prime degrees for quadratic Edwards curves based 

on Theorem 2 [7], and for twisted Edwards curves - Theorem 1 [8]. In the last work, for the 

first time, mapping )(Р  formulas for the curve (1) are given, depending on two parameters a

and d . We formulate it below. 

 

Theorem 1[1]. Let },...,,),0,1{( 21 sQQQG =  – subgroup of odd order 12 += sl of points 

),,( iiiQ  = of curve daE , (1) over field pF .  

Define  

                              .,),()(
,,













==  

  −

−+−+

GQ GQ Q

QP

Q

QP

Q

QP

Q

QP

x

y

x

y

x

x

x

x
yxP                           

Then ),( yx is l -isogeny with kernel G from the curve daE ,  to the curve daE ,   with parameters  

 

                                                  laa = , 8Add l= ,  
i

s

i
A  =
=

1
 ,                                                      (6) 

 and the mapping function  
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 ,                   (7)                       

or 
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1 22

22

21 22

22

2
,

1
),(








 .                                       (8) 

The proof of theorem in [8] is given.  

Here, functions (7) and (8) include parameters da, , which makes it possible to construct 

isogenies of twisted Edwards curves. 

 

CRITICAL ANALYSIS OF INCORRECT IMPLEMENTATION CONDITIONS 

OF CSIDH ALGORITHM ON EDWARDS CURVES IN WORK [1] 

 

Let us turn to the results of [1]. The main concept of this article is the construction of the 

CSIDH algorithm using one class - Edwards curves dE  (3) (the authors call it "purely Edwards 

curve", according to our classification [11] - "quadratic Edwards curve") over a prime field pF
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. Since the CSIDH algorithm is based on isogenies of supersingular curves using the quadratic 

twist of these curves, the question arises: is the problem posed in [1] solvable? 

All theorems of this work use one Farashakhi-Hoseini coordinate
2

1

2

1)( ydxPw =  for each 

point ),( 11 yxP = . It is clear that the quadratic character )())(( dPw  =  . The neutral element 

)0,1(=O  of curve (3) in theorems [1] designated as d0  , although for all curves (1) it does not 

depend on the parameter d . 

The key theorem in [1] is Theorem 4. Let us formulate it according to the original. 

 

Theorem 4[1]. Let 8mod3p . Let P  be a point on an Edwards curve dE  such that the P w-

coordinate pFPw )( , the order of P  is not a power of 2, and )(Pw  is square. If )2( Pw  is 

square, there exists P  such that ]1[ + pdEP  , )()2( PwPw = , and dP
p

0
4

1
=

+
.  If )2( Pw  

is not square, there exists P′ such that ]1[ − pdEP  , )()2(/1 PwPw = and dP
p

0
4

1
=

+
. 

Formulation of the theorem. The first error in the formulation of the theorem: for 

8mod3p  there are no curves dE  (3) that satisfied all conditions of the theorem. Indeed, in 

this case the order of the curve 8mod41+= pNE  is not divisible by 8. They exist only for 

8mod7p  [13, 14]. The order of such curves with the minimum even cofactor 8 is

18 +== pnNE , where 8mod1−p . For example, 8mod311=p  it sets a condition for 

the SEC of order 12=EN , which does not contain the factor 8. It is clear that it is impossible 

to prove such a theorem. 

  

On the proof of theorems [1]. In total, in Section 4 of [1], 10 lemmas and 7 theorems 

are proved. The condition 8mod3p  is specified in Lemmas 1,2,4, 5, 9, 10 and Theorems 3, 

4, 5 and 7 with references to the lemmas and to the points of the curve (3), which does not exist 

under this condition, as well as its quadratic twist - twisted SEC (4). The proof of theorems and 

lemmas with incorrect conditions in the formulation does not make sense. 

 

Further, the conditions of Theorem 4 define only one curve dE  (3) with the parameter d  

being a square ( 1,1)( = dd  ). For a random point ),( 11 yxP = and a point P2 on this curve, 

their respective w -coordinates are 

 

                              

2

2

1

2

1

11

2

2

1

2

1

2

1

2

12

1

2

1
1

2

1
)2(,)( 














+













−

−
==

ydx

yx

ydx

yx
dPwydxPw . 

It follows that for  ,011 yx  , the quadratic character )())2(())(( dPwPw  == is 

determined exclusively by the parameter d and, by the definition of curve dE  (3), is a square. 

This property is the same for both points P  and P2 , which contradicts the second assumption 

of the theorem. While the first assumption of the theorem is always true, the second assumption 

is always false for a given curve dE  (3), since it replaces 1)( =d  with 1)( −=d  . This means 

a transition to another class of SEC: complete Edwards curve (2) or twisted Edwards curve (4). 

The transition to the class of complete SEC (2) with 1)( −=d we exclude, since: 



 

 

156 

№ 3 (15), 2022 

 ISSN 2663 - 4023 

• The class (2) does not meet the first condition of Theorem 4 ( 1)( =d ); 

• All pairs of quadratic twist connected by parameters 
1d  lie inside this class; 

• Sets parameters d  of SEC (2) and (3) are different (in the sense of 
)3()2(

ki dd − ); 

• The class (2) does not contain points at infinity on which the proof of the theorem based. 

Exceptional points (points at infinity) exist only in the classes of quadratic SEC (which are 

excluded by the second assumption of Theorem 4) and twisted SEC [4, 11]. Thus, instead of 

the curve ]1[ −pdE   in the statement of Theorem 4, there should be a twisted curve ]1[, −pdaE   

with conditions 1)()( −== da   . It is important that this is no longer a curve dE , but its 

quadratic twist 1)( =d . Below we present our Theorem 2 with the proof of this assertion. 

On SEС dE  (3) with order 18 +== pnNE  ,  =
=

K

i iln
1

 there is a unique subgroup 

GQ = of points of prime order il  as the kernel of a unique isogeny ][ il . Over a prime field

pF , there is a unique SEС of the same order, defined as a quadratic twist 
t

dE of the curve (3), 

which has its own subgroup tQ   of points of the order il  as isogeny kernels 1][ −

il . All points 

(except points )0,1(),0,1( 0 −== DO  ) the pair of curves dE  and 
t

dE are distinct, as are the 

corresponding kernels  Q  and tQ   l -isogenies. According to Theorem 2

1)(,, −== aEE ada

t

d  . This is a twisted SEC, but not the Edwards curve, stated in the problem 

statement and in the title of the article [1]. 

Exceptional points at infinity of the 2-nd and 4-th orders of the curve (1) we can written 

[11, 12] 

  

                                             






 
=














=

d
F

d

a
D

1
,,, 12,1 ,                                        (9)       

where the symbol "∞" we put when dividing by 0. Over a prime field pF , all 4 points contain 

quadratic curves dE  (3), and the first 2 points of the 2-nd order are twisted curves (1) under the 

conditions .1)()( −== da   The latter generate a non-cyclic subgroup of points of the 2-nd 

order },),0,1(),0,1({ 2104 DDDOG −=== . According [11] the sums of a random point

411 ),( GyxP =  with exceptional points of the 2-nd order give the points 
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From here 
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For a similar sum with ordinary point of the 2-nd order )0,1(0 −=D  we have 
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                                   )()(),()0,1(),( 01111 PwDPwyxyx =+−−=−+                   (11) 

The sum of a random point 411 ),( GyxP =  with a 2-nd order point gives an even-order point, 

which on the curve order nNE 8=  is at least 8 times greater than the number of odd-order 

points. Of these, for (2/3) points, the coordinate )(Pw  is inverted according to (10), for the rest, 

according to (11), no. This is true for two classes - quadratic and twisted Edwards curves. 

However, this is not a reason to replace one curve with another [1], not forgetting that the 

quadratic characters )(d  of their parameters are inverse. It also follows from this that the 

second assertion of Theorem 4 is valid only for twisted Edwards curves, but not for curves dE  

(3) with one parameter. It is no less important that the condition 1)( −=d of this assertion is 

necessary but not sufficient. A condition 1)( −=a  and the connection between the parameters 

of the curves daE , and 
da

tE
,

should be determined (see our Theorem 2). 

Theorem 2. For the curve daE ,  (1) in the generalized Edwards form 2222 1 ydxayx +=+  , 

defined over a prime field, there is a unique quadratic twist curve 
t

da
E 

,
 with parameters

*
,, pFccddcaa == . 

Proof. From equation (1) we have 

 

                                                .
1

2

2
2

dxa

x
y

−

−
=                                                              (12) 

Let 12,1)(,1)( −===−= cdaad  . Quadratic twist (12) be given by transforming a square 

into a quadratic non-residue  
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Then for the curve of quadratic twist we can write the equation 

 

                                  1, −=
d

t

da
EE  :     1)(,1 22122 −=+=+ − dyxdyx  . 

The above conditions are valid for the class of complete Edwards curves with one parameter 

for 12 −== cda , 1,1 −== dda . This result [3] is known. 

Let now 1)()( == da   , 1)( −=c . In this case, quadratic twist (12) we can written 

as 

                                     
2
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2

2
2

2

2
21 111

xda

x

сdxсa

x
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x
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−
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−

−
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−

−
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. 

This implies that the quadratic twist of a curve daE ,  with parameters satisfying the condition 

1)()( == da   (a quadratic curve isomorphic to (3)) gives a curve of the class of twisted 

Edwards curves (1) after substituting ., cddсaa == 1)( −=c . In other words, the quadratic 

twist of a curve dE is a twisted Edwards curve .1)(,1)(,, −=== cdEE cdc

t

d  . The inverse 
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mapping is given by multiplying both parameters by :1−с .1)(,1)(,, −=== cdEE d

t

cdc   The 

theorem is proved. 

Corollary 1. For quadratic Edwards curves dE ( 1)( =d ) there are no quadratic twist curves 

within this class. 

Corollary 2. For complete Edwards curves dE  ( 1)( −=d ) there exist quadratic twist curves 

1−d
E  inside this class. 

Corollary 1 is obvious from the uniqueness of the mapping of quadratic twist as a bijection.  It 

eliminates the curves ]1[ −dE in [1]. 

Note that this result is well known from [4] (hence the term twisted Edwards curves), but 

with a different proof from our proof of Theorem 2. 

So, in the class of complete Edwards curves dE (2), the quadratic twist pairs 

1− d
t

d EE lies inside this class and has multiplicatively inverse parameters
1d  . On the 

contrary, for the class of quadratic Edwards curves (3), for 4mod3p  and 1−=с  , quadratic 

twist d

t

d EE −−→ ,1 gives a curve from the class of twisted Edwards curves with additively 

opposite parameters a  and d . 

We consider it proved that for the class of SEC ]1[ +pdE  defined in Theorem 4 [1], there 

are no curves of the same class ]1[ −pdE  as quadratic twist pairs, the formulation of Theorem 

4 is incorrect, and the concept of [1] is untenable. Strictly speaking, a unique transition of curve 

dE (3) with the condition 1)( =d to its quadratic twist is possible only in the class of twisted 

SEC with parameters ,, cddcaa ==  1)( −=с . Any SEC of this class is isomorphic to curve 

(4). 

Interestingly, the implementation of the CSIDH algorithm in [1] (Section 6.2) uses the 

parameters of [2] for cyclic curves in the Montgomery form with one point of the 2-nd order 

and the field modulus 587,1...4 747421 =−= llllp i , 4mod3p , therefore the algorithm 

also works on complete Edwards curves dE  (2) , isomorphic to cyclic curves in the 

Montgomery form. This does not correspond to the task, and does not confirmed by theoretical 

results. In addition, such an implementation of the CSIDH, is known [5].  

 

MODEL OF IMPLEMENTATION OF THE CSIDH ALGORITHM ON 

QUADRATIC AND TWISTED SEC 

 

To illustrate the above conclusions, consider a simple model of the CSIDH algorithm on 

quadratic and twisted SEC that form quadratic twist pairs with the same order [9]. Let such a 

pair of curves contain kernels of the 3-rd and 5-th order at the smallest value 15=n , then the 

minimum prime 239=p  and the order of these curves 24016 == nNE . The parameter d  of 

the entire family of 118 quadratic Edwards curves can be taken as squares

.119..2,mod2 == rprd . Of these, 30 pairs of quadratic and twisted SKE were found with 

parameters 1=a and .1)( =ad The quadratic SEC (3) is denoted by dE , and the twisted SKE 

(4) is denoted as dE −− ,1 . Table 1 shows the parameter d values for pairs of quadratic and twisted 

SEC. We written they as squares .119..5,,mod2 == rprd   
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Table 1. 

Parameter d values of quadratic and twisted SEC )1( =a for 239=p  and 240=EN  

 In the CSIDH algorithm, an isogenic mapping ],..,,[ 21

21
Ke

K

ee

A lll=  (class group action) 

from some base curve 0E  defines an isogenic curve 0* EE AA = . The sign of the degree ie  

isogeny exponent specifies, in our case, a quadratic ( ie  >0) or twisted ( ie < 0) SEC. At one step 

of the degree 1],[ =i

e

i el i  isogeny chain, the coordinates 2/)1(..1, −== lskk  of the points 

of the curve (3) kernel or the curve (4) kernel of order il are calculated, then using formula (6) 

il - isogenic curve E parameter d  . Two chains of isogenies with opposite signs of the 

exponents ie  give a neutral element of the mapping ][][
0

i

e

i

e

i lll ii =
−

, and then we get the 

original curve 0

0

0 *][ ЕlЕ i= . For example, for a pair of quadratic twist (3), (4)  at 1=ie  , one 

can calculate a 3-isogeny curve 
)1(

110

)0(

25 EE →  , then a transition to quadratic twist (4) 

)1(

110,1

)1(

110 −−→ EE  , then a 3-isogeny of curve (4) 
)2(

25,1

)1(

110,1 −−−− → EE  , and return to curve 

(3) 
)0(

25

)2(

25,1 EE →−− . This implies an important property: the sequences of parameters 
)(id  of 

isogenic quadratic and twisted SEC on a period have a reverse character. In other words, if such 

a sequence is calculated for quadratic SEC, then for twisted SEC it is not required to recalculate 

it, but it is enough to reverse it on a period (in the opposite order). 

Tables 2 and 3 show the results of calculation the parameters 
)(id of chains of 3- and 5-

isogenic quadratic SEC for module 239=p  . For twisted SEC, the sequences 
)(id  should be 

read backwards on the periodT . The period of 3-isogeny is 5=T  , and 5-isogeny 15=T .To 

completeness in table 2 there are still 4 rows missing, and in table 3 - 2 rows with the parameters 

of table 1, however, the given data is sufficient for an example. 

Table 2. 

Parameter 
)(id  values of two chains of 3-isogenic quadratic SEC ( 1=a ) for 239=p  

(period 5=T ) 

i 0 1 2 3 4 5 
)(id  25 110 50 10 3 25 

)(id  193 62 61 2 5 193 
 

Table 3. 

Parameter 
)(id  values of the chain of 5-isogenic quadratic SEC ( 1=a  ) for 239=p  , 

(period 15=T ) 

i 0 1 2 3 4 5 6 7 

d(i)  25 201 62 10 121 5 110 183 

i 8 9 10 11 12 13 14 15 

d(i)  61 3 187 193 50 11 2 25 

25 64 121  196 50 183 5 10 87 176 

24 153 11 110 48 187 120 193 27 160 

213 44 2 201 61 3 206 192 80 62 
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Let us take the secret keys of the exponents }{ iе  isogenies of Alice and Bob's 

),4,3( −=A  )5,4(−=B  , their functions of isogenic mappings, respectively ]5,3[ 43 −=A

, ]5,3[ 54−=B , Let's calculate their public keys BA dd , . As the starting curve of the chain of 

isogenies, we will take the curve .25

)0( EE =  Alice calculates the parameters of 7 isogenic 

curves )(iE : three 3-isogenuc quadratic SEC and 4 5-isogenic twisted SEC in an arbitrary order. 

According to tables 2 and 3, her calculations generate a chain of length 7 isogeny curves 

 

.22,125,1201,162,110,1105011025

)0( EEEEEEEEEEE →→→→→→→= −−−−−−−−−−  

 

So, Alice's public key .2=Ad . Similar calculations of Bob with a secret key )5,4(−=B  

form a chain of length 9 isogeny curves 

193193,1187,13,161,1183,1110,11105010325 EEEEEEEEEEEE →→→→→→→→→ −−−−−−−−−−−− , 

which gives the value of its public key .193=Вd  

Further, in the secret-sharing scheme, Alice, knowing Bob's public key, calculates the 

isogenic curve 187193

43 *]5,3[ EEEBА == − . Bob gets the same result using the function

1872

54 *]5,3[ EEEАВ == − . The shared secret is the parameter .187=AВd  If we know the sum 

key of Alice and Bob ),1,1(−=+ BA  using tables 2, 3, it is easy to check this result: 

.187325 )2()1()0( =→=→= ddd  Keys of opposite sign make the work of Alice and Bob 

fruitless. 

In principle, the CSIDH algorithm can be perform with exponents }{ iе  of the same sign 

and doubling their values to preserve security, but such a prospect, which halves the number of 

curves in the algorithm, is hardly interesting. 

The results of the implementation of the Edwards-CSIDH model [5] in projective 

coordinates ( : )W Z  state that it is faster than the Montgomery-CSIDH model in coordinates  

( : )X Z  by 20%. Note that this model is construct on complete Edwards curves with order

)(4 oddnnNE −= .  On the basis of Theorems 1 and 2 in [8], in [9], and in this paper, we have 

shown how to implement such a model on quadratic and twisted SEC that form pairs of 

quadratic twist. The advantage of these 2 classes of curves over the complete Edwards curves 

is the doubling of the number of curves used in the CSIDH algorithm with a corresponding 

increase in security. In addition, the time-consuming inversion 
1−→ dd of the parameter is not 

required when going to the complete quadratic twist curve. 

It can be concluded that the work [4], Theorem 2 and the illustration of the CSIDH model in 

this work will convince the authors of [1] of the erroneousness of their concept, that it is possible 

to implement the CSIDH algorithm using a single class "purely Edwards curves". In further 

research, we will consider the problems of constant-time CSIDH [16, etc.] and sampling of 

points. 
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ЯК ПОБУДУВАТИ CSIDH НА КВАДРАТИЧНИХ І СКРУЧЕНИХ КРИВИХ 

ЕДВАРДСА 

Анотація. В одної з відомих робіт виявлені некоректна постановка і невірне рішення задачі 

імплементації алгоритму CSIDH на кривих Едвардса
dE . Дана розгорнена критика цієї 

роботи с доведенням неспроможності її концепції. Розглянуті специфічні властивості трьох 

неізоморфних класів суперсингулярних кривих в узагальненої формі Едвардса: повних, 

квадратичних та скручених кривих Едвардса. Визначені умови існування кривих усіх 3-х 

класів з порядком кривих 1+p  над простим полем
pF . Імплементація алгоритму CSIDH на 

ізогеніях непарних простих степенів базується на застосуванні пар квадратичного кручення 

еліптичних кривих. З цією метою алгоритм CSIDH можна будувати як на повних кривих 

Едвардса з квадратичним крученням всередині цього класу, або на квадратичних і скручених 

кривих Едвардса, які створюють пари квадратичного кручення. В противагу до цього автори 

відомої роботи намагаються довести  теореми, які стверджують о наявності рішення 

всередині одного класу кривих
dE  з параметром d , який є квадратом. Проведено критичний 

аналіз теорем, лем, помилкових стверджень в цієї роботі. Доведено  теорема 2 про 

квадратичне кручення в класах кривих Едвардса.  Приведено модифікація алгоритму CSIDH, 

побудованого на ізогеніях квадратичних і скручених кривих Едвардса, Для ілюстрації 

коректного рішення задачі розглянуто приклад обчислень Аліси і Боба в схемі розподілу  

секретів згідно алгоритму CSIDH при 239=p  .  

Ключові слова: крива в узагальненій формі Едвардса, повна крива Едвардса скручена крива 

Едвардса, квадратична крива Едвардса, порядок кривої, порядок точки, ізоморфізм, ізогенія, 

w--координати, квадратичний лишок, квадратичний не лишок. 
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