

© M. Kotov, S. Toliupa, V. nakonechnyi, 2024

№ 3 (23), 2024

ISSN 2663 - 4023

DOI 10.28925/2663-4023.2024.23.155170

UDC 004.72:004.75

Maksym Kotov

Master’s degree in computer and information systems security, student at
the department of cyber security and information protection

Taras Shevchenko National University of Kyiv,

Department of Cybersecurity and Information Protection, Kyiv, Ukraine

ORCID 0000-0003-1153-3198

maksym_kotov@ukr.net

Serhii Toliupa

Doct. Sci. (Engineering), Professor, professor of the

department of cyber security and information protection

Taras Shevchenko National University of Kyiv, Department of Cybersecurity and

Information Protection, Kyiv, Ukraine

ORCID 0000-0002-1919-9174

tolupa@i.ua

Volodymyr Nakonechnyi

Doct. Sci. (Engineering), Professor, professor of the

department of cyber security and information protection

Taras Shevchenko National University of Kyiv, Department of Cybersecurity and

Information Protection, Kyiv, Ukraine

ORCID 0000-0002-0247-5400

nvc2006@i.ua

REPLICA STATE DISCOVERY PROTOCOL BASED ON ADVANCED

MESSAGE QUEUING PROTOCOL

Abstract. When it comes to the ever-changing landscape of distributed computing, having a solid

understanding of how to maintain state information that is synchronized and consistent among

replicas is extraordinarily critical. Within the scope of this investigation, the Replica State Discovery

Protocol, which is a component of the Advanced Message Queuing Protocol (AMQP), is developed

and examined in detail. The purpose of this investigation is to show how this protocol contributes to

the maintenance of consistent state information across many replicas in distributed systems. We will

start with the fundamentals of AMQP and the reasons why it is so important in the distributed
systems of today. This lays the groundwork for our more in-depth exploration of the Replica State

Discovery Protocol by providing the foundation. While going through each level of the protocol, we

will pay special attention to the way messages are passed back and forth during the phases as well

as the general handling of data. An important aspect examined in this study pertains to the difficulties

associated with the development of said protocol. Mitigating challenges such as race conditions and

executing seamless transitions between segments are not simple tasks. However, in this discussion,

we shall examine several viable approaches and resolutions that illuminate the practical and

theoretical dimensions of replica state management. This article is intended for individuals who are

enthusiastic about or are already engaged in distributed computing. In addition to being educational,

this work endeavors to inspire additional investigation and scrutiny concerning AMQP and state

management in distributed systems.

Keywords: distributed computing; state synchronization; Replica State Discovery Protocol (RSDP);

Advanced Message Queuing Protocol (AMQP); consistent state management; race conditions;

replica management.

156

№ 3 (23), 2024

ISSN 2663 - 4023

INTRODUCTION

AMQP is an open and standardized protocol designed for message-oriented middleware.

Its goal is to ensure reliable and efficient message sharing across diverse and faraway networks.

This is important for making conversation work in complicated system designs [1] – [3].

The three things that AMQP is based on are resilience, security, and interoperability [4].

It can handle a lot of different types of communication, from simple point-to-point lists to

advanced topic-based publish-subscribe models [5]. Because it can do so many things, AMQP

is the best choice for systems that need to communicate in a way that can grow, send messages

reliably, and keep transactional integrity [5].

The capacity of AMQP to build a unified messaging system that goes across platform and

language limitations is one of its notable features. In contrast to middleware systems that

depend on implementations or proprietary standards, this one achieves universality through a

protocol-centric approach. Through its role as a universal language for various systems, AMQP

guarantees consistent message exchanges, regardless of the technology used [7].

Even more so when considering distributed systems, AMQP’s importance becomes

apparent. It solves problems like message sequencing, fault tolerance, and network delay that

arise with distributed computing [8], [9]. To guarantee that messages are sent and received

efficiently while keeping the system’s integrity and coherence intact, AMQP offers a

dependable and standardized messaging architecture.

Problem formulation. Keeping track of the status of each node (also known as a

“replica”) and ensuring that they all have the same information is of the utmost importance in

the realm of distributed systems, which are essentially networks of nodes that are working

together [10] – [17]. These systems consist of a few components that can function across a

variety of network connection points. It is like having a team that is dispersed over multiple

places, and for everything to run smoothly, every member of the team needs to have access to

the same information that is up to date [10] – [15].

The difficulty arises when we attempt to maintain synchronization among all these

components, particularly when we are confronted with disturbances in the network or when

certain components of the system are momentarily disconnected [10] – [14]. What would it be

like to try to keep a group of friends informed about a plan when the signal quality on each of

their phones is different? It is possible that some messages will come late or not at all.

The ability of a distributed system to withstand problems, such as when a component fails

or ceases to be accessible, is strongly dependent on the synchronization that occurs between its

components [11] – [14]. It is possible that due to a component of the system not having access

to the most recent information, the computations or conclusions that are drawn are inaccurate.

In the case that one component of the system suffers issues, the synchronization method acts as

a safety net to ensure that the remaining components of the system can continue to function

correctly with the appropriate information that is communicated [13] – [15].

The correct integration of new or updated components is another essential aspect, as is

the determination of the current condition of each component [16]. The act of simply sharing

data throughout this procedure is not as crucial as making certain that every component is aware

of the others and the condition in which they are currently located. Additionally, this makes it

easier for the system to adjust to changes, such as the allocation of employment or the

processing of new labor [17].

The purpose of the article. To summarize, the aim of this research is to develop a

distributed system synchronization protocol that is durable, adaptive, and able to keep a record

of each component and make certain that they are in sync with one another.

157

№ 3 (23), 2024

ISSN 2663 - 4023

UNDERSTANDING REPLICA STATE DISCOVERY PROTOCOL

Definition and role of AMQP in Replica State Discovery Protocol. The Replica State

Discovery Protocol is an enhancement to the Advanced Message Queuing Protocol (AMQP),

which was developed specifically for the difficult issue of managing states in distributed

systems [3] – [7]. Its purpose is to ensure that every component of a network, referred to as a

“replica”, is aware of the others and is in sync with them. This protocol makes full use of the

powerful messaging capabilities of AMQP to guarantee that every node in a distributed system

can locate and align its state with the states of the other nodes while maintaining efficiency.

The following figure shows a sequential diagram of AMQP interactions:

Fig. 1. AMQP interactions

The operation is as follows: Imagine a group of people working on different aspects of a

project from where they are physically located. Using the Replica State Discovery Protocol,

every member of the team (or replica) can not only learn about the new or existing members of

the team, but also ensure that everyone is on the same page. In circumstances in which having

information that is both up to date and consistent throughout all components of the system is

essential to the system’s reliability and efficacy, this is of the utmost importance.

The part that this protocol plays in systems that use AMQP is quite important. First, it

makes these networks more reliable. It is important for each part of the network to know about

the other parts and their state, just like it is important for a team to know who is working on what.

It is important to have this kind of knowledge to keep the system’s consistency and integrity,

especially when the network is down or having issues.

158

№ 3 (23), 2024

ISSN 2663 - 4023

The second point is that the protocol is a big part of how the system handles its tasks and how

much it can cope with. According to the needs, the system can decide how to distribute resources

and when to scale up or down by keeping an eye on the state of each copy. Making this change not

only improves speed but also makes sure that resources are used in the best way possible.

Overview of the protocol's phases: DEBATES, SHARE, and CLOSE. There are clear

steps that the Replica State Discovery Protocol follows: “DEBATES”, “SHARE”, and

“CLOSE”. Each of these steps is a structured way to manage the state of a distributed

environment, and they all work together to make sure the system is consistent and reliable.

The following figure shows a sequential diagram of RSDP phases:

Fig. 2. RSDP Phases

159

№ 3 (23), 2024

ISSN 2663 - 4023

The protocol starts the process of gathering states in the “DEBATES” step. At this stage,

replicas send “HELLO” and “STATUS” messages to each other, which works as a preparation

for sharing states. The “HELLO” messages are a way for replicas to introduce themselves to

the network. After this, the “STATUS” messages are being sent in response to share data about

what’s going on with each replica right now.

Right after the “DEBATES” phase is over, the protocol goes on to the “SHARE” phase.

Now that the states have been received, the focus shifts to putting together and organizing the

information about the states that was gathered in the “DEBATES” phase. An aggregated state

will be shared with all the replicas during this stage. Every replica will broadcast its aggregation

into the network thus achieving consensus after validation. This makes sure that every replica

has the same copy of the shared state.

At some point when replica decides that its job is done, it could move on to the “CLOSE”

step, which deals with the idea that replicas might be shut down or removed from the system

when they are no longer needed. During this phase, a replica that is about to shut down will

send a message to the other members. This message tells the replication members that are still

alive that they need to change their states and get ready for the replica to leave. The “CLOSE”

phase makes sure that the system can dynamically adapt to changes in its components, which

preserves its working continuity and resilience.

The Replica State Discovery Protocol keeps a careful balance between speed and

thoroughness during these stages to make sure that state synchronization is both complete and

on time. Throughout the process, this balance is kept. The protocol has a methodical way of

handling these steps, which makes it less likely that race conditions and errors will happen. This

makes it an important tool in the field of distributed computing.

Overview of the protocol’s state management principles. Several key ideas form the

basis of the Replica State Discovery Protocol, which was developed with the purpose of

efficiently managing states in distributed systems while also addressing the inherent complexity

and dynamic nature of these systems.

One of the most important aspects of the protocol is that it encourages state abstraction

and encapsulation. In other words, the mechanism for preserving the state, which includes

retrieving, updating, and synchronizing it, is housed within a separate module according to this

declaration. By separating the components, the system becomes more organized, more

manageable, and better equipped to respond to changes.

Implementing dependency injection for state management is another key factor that must

be taken into consideration. Rather than being hardcoded into the system, the state management

module is offered as a component that can be interchanged with other modules. The versatility

of the system is increased utilizing this method, which also makes adjustments and extensions

easier to implement. The system’s adaptability and scalability are both increased because of

this feature, which also makes it possible to incorporate plugins, each of which is accountable

for a certain state component.

Across all replicas, the protocol places a high priority on synchronization and consistency

maintenance. For ensuring that the system continues to be in a consistent state, the state

management module gathers state information from several replicas and resolves any

inconsistencies that the information may contain. Because of this, advanced algorithms and

methods are required to manage conflicts and achieve convergence to a unified state, even when

the network conditions are challenging.

160

№ 3 (23), 2024

ISSN 2663 - 4023

TECHNICAL DEEP-DIVE INTO THE PROTOCOL PHASES

Detailed explanation of the “DEBATES” phase. It is the broadcasting of “HELLO”

messages that marks the beginning of the “DEBATES” phase of the Replica State Discovery

Protocol, which concludes with the “broadcastShare” method. Establishing initial communication

across replicas and laying the groundwork for state synchronization are both essential tasks that

must be completed during this phase.

The “broadcastHello” method, which is responsible for declaring the presence of a

replica in the network, is initiated at the beginning of the phase:

async broadcastHello() {

 await this.interPhaseMutex.acquire();

 await this.broadcast({

 type: ReplicaStateDiscoveryProtocol.MESSAGE_TYPES.HELLO,

 from: this.getSenderCredentials(),

 });

}

In this case, the “interPhaseMutex.acquire()” method guarantees exclusive access to the

state management phase, which helps to prevent race conditions from occurring while greeting

messages are being broadcast for the first time. The critical portion of the protocol, which is

where concurrent activities have the potential to change the state of the protocol, is protected

by this mutex [18] – [21].

The following figure shows mutex operations sequential diagram:

Fig. 3. Mutex Operations Sequence

161

№ 3 (23), 2024

ISSN 2663 - 4023

Following the receipt of a “HELLO” message, a replica will send a “STATUS” message

in response, which will indicate the present state of the replica. “handleHelloMessage” is the

method that is responsible for managing this interaction:

async handleHelloMessage({ from }) {

 return this.amqpClient.publish(from.address, {

 type: ReplicaStateDiscoveryProtocol.MESSAGE_TYPES.STATUS,

 data: this.stateManager.getCurrentState(),

 from: this.getSenderCredentials(),

 });

}

The current state of the replica that is responding is included in the “STATUS” message that

is published to the network by this approach. This is an essential component of state

synchronization.

It is only when replicas start to receive “STATUS” signals that they begin to construct a

perspective of the current state of the network. The following snippet shows implementation of

this “handleStatusMessage” method:

async handleStatusMessage(message) {

 this.statusMessageBuffer.push(message);

 if (this.statusDebounceTimeout) {

 clearTimeout(this.statusDebounceTimeout);

 }

 this.statusDebounceTimeout = setTimeout(

 this.handleStatusUpdate.bind(this),

 this.statusDebounceDelay,

);

}

The incoming “STATUS” messages are buffered by this method, which also makes use of a

debounce timeout “statusDebounceTimeout”. By ensuring that the replica handles these messages

collectively after a predetermined amount of time has passed, the timeout makes it possible to have

a state representation that is more accurate. The “broadcastShare” method is the final step in the

“DEBATES” phase, and it is responsible for broadcasting the aggregated data to all replicas.

async handleStatusUpdate() {

 const replicaStatus =

this.stateManager.aggregateState(this.statusMessageBuffer);

 await this.broadcastShare(replicaStatus);

}

async broadcastShare(status) {

 await this.broadcast({

 type: ReplicaStateDiscoveryProtocol.MESSAGE_TYPES.SHARE,

 data: status,

 from: this.getSenderCredentials(),

 });

 this.interPhaseMutex.release();

}

162

№ 3 (23), 2024

ISSN 2663 - 4023

When the “handleStatusUpdate” function is called, it computes the combined state. This

status is then sent to the network through the “broadcastShare” function. The most important

thing about this process synchronization is the release of “interPhaseMutex” after transmission,

which ends the protocol phase.

Beginning with the “broadcastHello” operation and concluding with the

“broadcastShare” operation, the “DEBATES” phase consists of a series of controlled

interactions that are repeated throughout the phase. It is essential to make careful use of the

“interPhaseMutex” and to configure debouncing for the handling of status messages to ensure

that the replicas can be brought into sync in a timely and accurate manner.

Exploration of the “SHARE” phase. The “SHARE” phase is a step that comes after the

“DEBATES” phase. In the beginning of this phase, the replicas start the process of

synchronizing the information that they have gathered about the state. In addition to this, they

initiate the process of aggregating the data that they have stored from the previous phase.

The subsequent steps include broadcasting this information to all the replicas that are

present on the network. This is accomplished with a broadcasting mechanism that is

incorporated within the AMQP protocol.

At this stage, it is important to mention that the protocol is designed to deal with the

possibility of racing conditions. It is common practice to make use of synchronization locks

and mutexes to solve this problem [18] – [20]. The utilization of these synchronization

techniques ensures that state changes are managed in a controlled and sequential manner, hence

preventing any conflicts or data corruptions that may be generated by concurrent state

alterations. This is accomplished by ensuring that the state changes are managed consecutively.

For instance, consider the following code snippet illustrating the synchronization process:

async handleShareMessage(message) {

 await this.interPhaseMutex.acquire();

 try {

 const replicaState =

this.stateManager.sanitizeShareMessage(message);

 if (this.stateManager.shouldReload(replicaState)) {

 this.stateManager.updateState(replicaState);

 await this.marketsManager.reloadActive(

 this.stateManager.normalizeState(replicaState),

);

 }

 } finally {

 this.interPhaseMutex.release();

 }

}

In this code snippet, the “handleShareMessage” function operations are shown. The

process begins with acquiring lock in the mutex called “interPhaseMutex”. This mutex ensures

that no two “SHARE” messages are handled at the same time, thus avoiding race conditions.

The “sanitizeShareMessage” method is responsible for filtering and validation of incoming

state data. The “shouldReload” method contains logic to make a decision whether the state has

changed and whether the internal state of replica should be updated. If this method decides that

internal state should be updated — the data gets passed to the “normalizeState” method which

is responsible for formatting in a form that could be used in this particular replica.

163

№ 3 (23), 2024

ISSN 2663 - 4023

Description of the “CLOSE” phase. Each node in the network receives a “CLOSE”

message from a replica that exits the network before the “CLOSE” phase begins. The network-

wide shutdown notification procedure is initiated by this signal. This message’s purpose is to

inform the remainder of the system that the replica is going to depart. Because of this, the other

replicas can adjust their parameters and reorganize their states according to the updated data.

The remaining replicas will undergo a sequence of actions to adapt to the new network topology

the moment they get a “CLOSE” message. They typically need to update their internal state to

remove any references and dependencies to the replica that is exiting the network before they

can accomplish this. This is also the time when the responsibilities of the node that is exiting

the system may be transferred to another node. The system will continue to function normally

if this is done.

The handling of a “CLOSE” message can be illustrated by the following code snippet:

async handleCloseMessage(message) {

 this.closeMessageBuffer.push(message);

 if (this.closeDebounceTimeout) {

 clearTimeout(this.closeDebounceTimeout);

 }

 this.closeDebounceTimeout = setTimeout(

 this.handlePolicyClose.bind(this),

 this.closeDebounceDelay,

);

}

async handlePolicyClose() {

 await this.interPhaseMutex.acquire();

 try {

 const replicaStatus = this.stateManager.aggregateCloseState(

 this.closeMessageBuffer,

);

 this.closeMessageBuffer = [];

 await this.marketsManager.reloadActive(

 this.stateManager.normalizeState(replicaStatus),

);

 } finally {

 this.interPhaseMutex.release();

 }

}

In this implementation “handleCloseMessage” is responsible for collecting “CLOSE”

messages that may happen at the same time. It uses debounce system to avoid premature status

updates, thus optimizing resources utilization by avoiding unnecessary calls to the

“stateManager” and stores incoming messages in the “closeMessageBuffer” buffer.

Once the configured debounce timeout is reached, through the event loop, the

“handlePolicyClose” gets called. At this point the “CLOSE” state management phase begins

and the “interPhaseMutex” gets acquired. Messages stored in a buffer will be aggregated

164

№ 3 (23), 2024

ISSN 2663 - 4023

through “aggregateCloseState” call on “stateManager”, thus providing a new stable state for

replicas. After aggregation, the internal state gets updated and mutex will be released.

STATE MANAGEMENT AND DEPENDENCY INJECTION

Discussion on state management abstraction. Putting state management into its own

class is a smart engineering choice that is needed to handle the complexity of distributed

systems. The Replica State Discovery Protocol takes this method into account. There are several

useful reasons for this abstraction, which are necessary to keep the system working correctly

and quickly. To begin, flexibility is increased by separating the protocol's most important

functions from its state management. The protocol can adapt to changes in how the state

manages itself without affecting other parts of the process because it is built this way. It is

possible to change how a state is managed without changing how the protocol works in its most

basic form. This makes maintenance and updates much easier.

The following figure shows a “ReplicaStateManager” class diagram:

Fig. 4. ReplicaStateManager Class Diagram

165

№ 3 (23), 2024

ISSN 2663 - 4023

With this division, it’s possible to make things better. Before anything else, this

abstraction makes it easy to scale. When it comes to distributed systems, it can get harder to

keep track of state as the number of nodes or copies grows. Because this part is abstract, the

protocol can more easily include a number of different state management methods that can work

with a wide range of scales and levels of complexity. This makes it possible to use a plug-and-

play approach, which means that different state management strategies can be used depending

on what the system needs.

State management plugins. When it comes to distributed systems, the “stateManager”

is an important part of handling the complicated parts of state management. For this component,

which was meant to be both adaptable and expandable, plugins are the main way that it can be

changed and integrated. These plugins are specialized tools that handle different aspects of state

management in order to meet the needs of a distributed system. For those needs, they offer a

way that can be changed to fit them.

That’s why the “stateManager” has plugins built in to handle specific jobs that are linked

to the state. It is the job of each plugin to take care of a certain part of the state. Let’s say that

one plugin is in charge of keeping replica members up to date and another plugin is in charge

of managing process queues:

class ReplicaStateManager {

 constructor({ Plugins, address }) {

 this.Plugins = Plugins;

 this.plugins = [];

 this.address = address;

 this.init({ address });

 }

 init({address }) {

 this.plugins = this.Plugins.map((Plugin) => {

 return new Plugin({

 address,

 });

 });

 }

 getCurrentState() {

 return this.plugins.reduce((state, stateManager) => {

 const partialState = stateManager.getCurrentState();

 return {

 ...state,

 ...partialState,

 };

 }, {});

 }

 sanitizeShareMessage(shareMessage) {

 return this.plugins.reduce((message, stateManager) => {

 const partialMessage =

 stateManager.sanitizeShareMessage(shareMessage);

 return {

166

№ 3 (23), 2024

ISSN 2663 - 4023

 ...message,

 ...partialMessage,

 };

 }, {});

 }

 shouldReload(state) {

 const reloadVotes = this.plugins.map((stateManager) => {

 return stateManager.shouldReload(state);

 });

 return reloadVotes.some((shouldReload) => shouldReload);

 }

 updateState(state) {

 this.plugins.forEach((stateManager) => {

 return stateManager.updateState(state);

 });

 }

 normalizeState(replicaState) {

 return this.plugins.reduce((state, stateManager) => {

 const partialState =

stateManager.normalizeState(replicaState);

 return {

 ...state,

 ...partialState,

 };

 }, {});

 }

 aggregateState(statusMessageBuffer) {

 return this.plugins.reduce((state, stateManager) => {

 const partialState =

 stateManager.aggregateState(statusMessageBuffer);

 return {

 ...state,

 ...partialState,

 };

 }, {});

 }

 aggregateCloseState(closeMessageBuffer) {

 return this.plugins.reduce((state, stateManager) => {

 const partialState =

 stateManager.aggregateCloseState(closeMessageBuffer);

 return {

 ...state,

 ...partialState,

 };

 }, {});

 }

}

167

№ 3 (23), 2024

ISSN 2663 - 4023

CONCLUSIONS

In real-life situations, like high-availability database clusters or global content delivery

networks, it is important to handle protocol stages in the right way to keep all nodes up to date.

This has to be done correctly for tasks like load balancing, fault tolerance, and data replication

between nodes that are in different places.

The rules and steps used in the Replica State Discovery Protocol have a big effect on how

distributed systems are designed and how reliable they are. These systems are more reliable as

a whole because of the protocol. It does this by handling race conditions and controlled state

synchronization. This means that services and companies that use distributed architectures can

count on more uptime, consistent performance, and trustworthiness. In fields like finance, e-

commerce, and cloud services, where data availability and integrity are very important, the

ability to consistently maintain state across distributed systems is very useful.

The Replica State Discovery Protocol is brought to light in the field of distributed systems

through an analysis that shows how important it is. The protocol shows the level of

sophistication that can be used in current distributed computing by solving problems with state

management, synchronization, and how well nodes can communicate to each other.

The designed procedure controls these steps to lower the chance of race conditions and

keep the integrity of the system’s state. The fact that state management is abstracted, and

dependency injection is built in is more proof that the protocol follows modern software design

principles. You can see how flexible and adaptable it is by the fact that it can work with many

different types of distributed systems and meet their needs by using tools for managing state.

In the real world, the protocol could be used for a large spectrum of domains, starting

from edge computing to cloud computing and computing for the Internet of Things. This shows

that it is both useful and flexible. Because it can react so well to different operational situations,

it is very useful in situations where precise coordination and synchronization are needed.

REFERENCES (TRANSLATED AND TRANSLITERATED)

1. AMQP 0-9-1 Model Explained | RabbitMQ. (n.d.). RabbitMQ: One broker to queue them all | RabbitMQ.
https://rabbitmq-website.pages.dev/tutorials/amqp-concepts

2. AMQP 0-9-1 Model Explained. (n.d.). VMware Docs Home. https://docs.vmware.com/en/VMware-

RabbitMQ-for-Kubernetes/1/rmq/tutorials-amqp-concepts.html

3. AMQP vs. MQTT: 9 Key Differences - Spiceworks. (2024). Spiceworks.

https://www.spiceworks.com/tech/networking/articles/amqp-vs-mqtt/

4. Chapter 8. Advanced Message Queuing Protocol (AMQP) Red Hat AMQ 6.3 | Red Hat Customer Portal.

(2024). Red Hat Customer Portal. https://access.redhat.com/documentation/en-

us/red_hat_amq/6.3/html/connection_reference/amqp

5. FAQ: What is AMQP and why is it used in RabbitMQ? - CloudAMQP. (2024). CloudAMQP.

https://www.cloudamqp.com/blog/what-is-amqp-and-why-is-it-used-in-rabbitmq.html

6. Understanding AMQP, the protocol used by RabbitMQ. (2024). Understanding AMQP, the protocol used
by RabbitMQ. https://spring.io/blog/2010/06/14/understanding-amqp-the-protocol-used-by-rabbitmq

7. Novikov, I. (2021). What is AMQP Protocol ? All you need to know. Medium.

https://d0znpp.medium.com/what-is-amqp-protocol-all-you-need-to-know-c9eedb680c71

8. Selvam, M. (2023). AMQP — Introduction and Story of the RabbitMQ. Medium.

https://medium.com/@manikandanselvam_89994/amqp-introduction-and-story-of-the-rabbitmq-

6f905980369a
9. Tezer, O. (2013). An Advanced Message Queuing Protocol (AMQP) Walkthrough. DigitalOcean | Cloud

Infrastructure for Developers. https://www.digitalocean.com/community/tutorials/an-advanced-message-

queuing-protocol-amqp-walkthrough

168

№ 3 (23), 2024

ISSN 2663 - 4023

 10. Panwar, S. (2023). Synchronizing Distributed Applications: Harnessing the Power of Distributed Systems.

Medium. https://medium.com/@shasviv2006/synchronizing-distributed-applications-harnessing-the-
power-of-distributed-systems-33c6f61abb73#:~:text=Synchronization%20in%20distributed%

20systems%20is,happens%20in%20the%20right%20order

11. Synchronization in a Distributed System | 8th Light. (n.d.). 8th Light.

https://8thlight.com/insights/synchronization-in-a-distributed-system

12. GAME. (2018). Synchronization between nodes in a distributed system forming a blockchain. Medium.

https://medium.com/game/synchronization-609369558ce7

13. How to Synchronize Distributed systems? (n.d.). Programmer Prodigy.

https://programmerprodigy.code.blog/2021/07/07/how-to-synchronize-distributed-systems/

14. Lawal, S. (2023). Distributed Systems: Synchronisation in Complex Systems. Backend Engineering

w/Sofwan. https://blog.sofwancoder.com/distributed-systems-synchronisation-in-complex-systems

15. Synchronization In A Distributed Operating System – LEMP. (n.d.). LEMP – App & Tech Guides.

https://lemp.io/what-is-synchronization-in-distributed-operating-system/
16. Synchronization in Distributed Systems - GeeksforGeeks. (n.d.). GeeksforGeeks.

https://www.geeksforgeeks.org/synchronization-in-distributed-systems/

17. Pan, L. (2018). State Machine and Synchronization. Lu’s blog. https://blog.the-pans.com/state-machine-

and-sync/

18. Babitski, Y. (2020). What Is Mutex? Medium. https://medium.com/swlh/what-is-mutex-6127af8ced4f

19. Ibrahim, D. (n.d.). Semapores and mutexes. ResearchGate.

https://www.researchgate.net/publication/341708618_Semapores_and_mutexes

20. Mutexes and Semaphores Demystified. (n.d.). Software Expert Witness | Barr Group.

https://barrgroup.com/blog/mutexes-and-semaphores-demystified

21. Semaphores and mutexes [LWN.net]. (n.d.). Welcome to LWN.net [LWN.net].

https://lwn.net/Articles/165039/

https://medium.com/@shasviv2006/synchronizing-distributed-applications-harnessing-the-power-of-distributed-systems-33c6f61abb73#:~:text=Synchronization%20in%20distributed%
https://medium.com/@shasviv2006/synchronizing-distributed-applications-harnessing-the-power-of-distributed-systems-33c6f61abb73#:~:text=Synchronization%20in%20distributed%

169

№ 3 (23), 2024

ISSN 2663 - 4023

Котов Максим Сергійович

Магістр кібербезпеки, студент кафедри кібербезпеки та захисту інформації
Київський національний університет імені Тараса Шевченка, Київ, Україна

ORCID 0000-0003-1153-3198

maksym_kotov@ukr.net

Толюпа Сергій Васильович

д.т.н., професор, професор кафедри кібербезпеки та захисту інформації

Київський національний університет імені Тараса Шевченка, Київ, Україна

ORCID 0000-0002-1919-9174

tolupa@i.ua

Наконечний Володимир Сергійович

д.т.н., професор, професор кафедри кібербезпеки та захисту інформації

Київський національний університет імені Тараса Шевченка, Київ, Україна

ORCID 0000-0002-0247-5400
nvc2006@i.ua

ПРОТОКОЛ ВИЯВЛЕННЯ СТАНУ РЕПЛІКИ НА ОСНОВІ РОЗШИРЕНОГО

ПРОТОКОЛУ ЧЕРГИ ПОВІДОМЛЕНЬ

Анотація. Коли справа доходить до ландшафту розподілених обчислень, який постійно

змінюється, дуже важливо знати та розуміти, як підтримувати синхронізацію та узгодженість
інформації про стан між репліками. Дане дослідження націлене на створення протоколу

виявлення стану репліки, який побудований на основі розширеного протоколу черги

повідомлень (AMQP). Метою цього дослідження є вивчення того, як створений протокол

підтримує узгоджену інформацію про стан у різних репліках у розподілених системах.

Почато дослідження з основ AMQP і того, чому він такий важливий для сучасних

розподілених систем. Переглядаючи кожен рівень протоколу, було звернено увагу на

загальну обробку даних і на те, як повідомлення передаються протягом кожного етапу.

Проблеми, пов’язані з розробкою згаданого протоколу, є важливою темою цього

дослідження. Непростим завданням є вирішення проблем, таких як стани гонитви, і

забезпечення консистентних переходів між фазами. У даній роботі розглянуто теоретичні та

практичні аспекти управління репліками стану. Дана стаття створена для тих, хто цікавиться
або вже використовує розподілені обчислення.

Ключові слова: розподілені обчислення; синхронізація стану; Replica State Discovery

Protocol (RSDP); Advanced Message Queuing Protocol (AMQP); послідовне управління станом;

стан гонитви; керування репліками.

СПИСКИ ВИКОРИСТАНИХ ДЖЕРЕЛ

1. AMQP 0-9-1 Model Explained | RabbitMQ. (n.d.). RabbitMQ: One broker to queue them all | RabbitMQ.

https://rabbitmq-website.pages.dev/tutorials/amqp-concepts
2. AMQP 0-9-1 Model Explained. (n.d.). VMware Docs Home. https://docs.vmware.com/en/VMware-

RabbitMQ-for-Kubernetes/1/rmq/tutorials-amqp-concepts.html

3. AMQP vs. MQTT: 9 Key Differences - Spiceworks. (2024). Spiceworks.

https://www.spiceworks.com/tech/networking/articles/amqp-vs-mqtt/

4. Chapter 8. Advanced Message Queuing Protocol (AMQP) Red Hat AMQ 6.3 | Red Hat Customer Portal.

(2024). Red Hat Customer Portal. https://access.redhat.com/documentation/en-

us/red_hat_amq/6.3/html/connection_reference/amqp

5. FAQ: What is AMQP and why is it used in RabbitMQ? - CloudAMQP. (2024). CloudAMQP.

https://www.cloudamqp.com/blog/what-is-amqp-and-why-is-it-used-in-rabbitmq.html

6. Understanding AMQP, the protocol used by RabbitMQ. (2024). Understanding AMQP, the protocol used

by RabbitMQ. https://spring.io/blog/2010/06/14/understanding-amqp-the-protocol-used-by-rabbitmq

170

№ 3 (23), 2024

ISSN 2663 - 4023

7. Novikov, I. (2021). What is AMQP Protocol ? All you need to know. Medium.

https://d0znpp.medium.com/what-is-amqp-protocol-all-you-need-to-know-c9eedb680c71

8. Selvam, M. (2023). AMQP — Introduction and Story of the RabbitMQ. Medium.

https://medium.com/@manikandanselvam_89994/amqp-introduction-and-story-of-the-rabbitmq-

6f905980369a

9. Tezer, O. (2013). An Advanced Message Queuing Protocol (AMQP) Walkthrough. DigitalOcean | Cloud

Infrastructure for Developers. https://www.digitalocean.com/community/tutorials/an-advanced-message-

queuing-protocol-amqp-walkthrough
10. Panwar, S. (2023). Synchronizing Distributed Applications: Harnessing the Power of Distributed Systems.

Medium. https://medium.com/@shasviv2006/synchronizing-distributed-applications-harnessing-the-

power-of-distributed-systems-33c6f61abb73#:~:text=Synchronization%20in%20distributed%

20systems%20is,happens%20in%20the%20right%20order

11. Synchronization in a Distributed System | 8th Light. (n.d.). 8th Light.

https://8thlight.com/insights/synchronization-in-a-distributed-system

12. GAME. (2018). Synchronization between nodes in a distributed system forming a blockchain. Medium.

https://medium.com/game/synchronization-609369558ce7

13. How to Synchronize Distributed systems? (n.d.). Programmer Prodigy.

https://programmerprodigy.code.blog/2021/07/07/how-to-synchronize-distributed-systems/

14. Lawal, S. (2023). Distributed Systems: Synchronisation in Complex Systems. Backend Engineering

w/Sofwan. https://blog.sofwancoder.com/distributed-systems-synchronisation-in-complex-systems
15. Synchronization In A Distributed Operating System – LEMP. (n.d.). LEMP – App & Tech Guides.

https://lemp.io/what-is-synchronization-in-distributed-operating-system/

16. Synchronization in Distributed Systems - GeeksforGeeks. (n.d.). GeeksforGeeks.

https://www.geeksforgeeks.org/synchronization-in-distributed-systems/

17. Pan, L. (2018). State Machine and Synchronization. Lu’s blog. https://blog.the-pans.com/state-machine-

and-sync/

18. Babitski, Y. (2020). What Is Mutex? Medium. https://medium.com/swlh/what-is-mutex-6127af8ced4f

19. Ibrahim, D. (n.d.). Semapores and mutexes. ResearchGate.

https://www.researchgate.net/publication/341708618_Semapores_and_mutexes

20. Mutexes and Semaphores Demystified. (n.d.). Software Expert Witness | Barr Group.

https://barrgroup.com/blog/mutexes-and-semaphores-demystified
21. Semaphores and mutexes [LWN.net]. (n.d.). Welcome to LWN.net [LWN.net].

https://lwn.net/Articles/165039/

This work is licensed under Creative Commons Attribution-noncommercial-sharealike 4.0 International License.

https://medium.com/@shasviv2006/synchronizing-distributed-applications-harnessing-the-power-of-distributed-systems-33c6f61abb73#:~:text=Synchronization%20in%20distributed%
https://medium.com/@shasviv2006/synchronizing-distributed-applications-harnessing-the-power-of-distributed-systems-33c6f61abb73#:~:text=Synchronization%20in%20distributed%
http://creativecommons.org/licenses/by-nc-sa/4.0/

