BKIBEPBE3NEKA: ocsita HayKa, TexHiKa Ne 4 (24), 2024

CYBERSECURITY: ISSN 2663 - 4023
A EDUCATION, SCIENCE, TECHNIQUE

DOI 10.28925/2663-4023.2024.24.321340
UDC 004.72:004.77

Maksym Kotov

Master’s degree in computer and information systems security,
student at the Department of Cybersecurity and Information Protection
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
ORCID ID: 0000-0003-1153-3198

maksym_kotov@ukr.net

Serhii Toliupa

Doctor of Sciences, professor, professor of Department of
Cybersecurity and Information Protection

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
ORCID ID: 0000-0002-1919-9174

tolupa@i.ua

METHODS OF BUILDING DURABLE UDP PORT
MAPPINGS IN A NAT-BASED ENVIRONMENT

Abstract. Staying abreast with User Datagram Protocol (UDP) has become more crucial in modern
digital networks, which are continuously expanding and becoming more intricate. Maintaining UDP
mappings in a NAT-based environments, reliable and uninterrupted communication for various
duties, such as expeditiously transmitting data and establishing secure connections via virtual private
networks (VPNs) like WireGuard is of utmost importance. Network Address Translation (NAT) is
an important part of protecting the limited number of global Internet Protocol (IP) addresses and
making networks safer by hiding how private communication networks are set up on the inside.
However, NAT presents a number of challenges, one of which is the dynamic assignment of port
numbers, which has the potential to result in disruptions in connections. The objective of this article
is to elaborate on the functioning of WireGuard, placing particular emphasis on the criticality of
dependable UDP mappings in order to achieve peak performance. In addition, the paper examines
VMware’s Network Address Translation solution to illustrate the challenges associated with
maintaining UDP mappings. In this article, an investigation is conducted into the many methods and
current solutions that have been developed in order to mitigate said issues. Some of the strategies
that have been implemented include the utilization of static port mapping in order to establish a
reliable route through NAT, the extension of the Time to Live (TTL) for port mappings in order to
reduce the number of connection disruptions, and the approach of sending empty UDP packets in
order to keep active mappings. In addition, a novel solution is suggested: a protocol for managing
NAT mapping that makes an effort to simplify the process of modifying the frequency of UDP
probes by requiring NAT devices to disclose their TTL settings. The purpose of this protocol is to
make NAT mapping easier to manage and more efficient in terms of overall network traffic.

Karouosi cioa: Network Address Translation (NAT); User Datagram Protocol (UDP); Virtual
Private Networks (VPNs); WireGuard; VMware; persistent UDP mappings; port mapping Time to
Live (TTL); static port mapping; NAT traversal techniques; NAT mapping support protocol;
network reliability; network performance optimization.

INTRODUCTION

When it comes to network communications, it is hard to place enough emphasis on the
significance of protocols and procedures that simplify the process of transmitting information
across a variety of digital infrastructures.

An essential protocol that is utilized across a wide range of various domains is the User
Datagram Protocol, which is also referred to as UDP. In spite of the fact that it does not

© M. Kotov, S. Toliupa, 2024

B KIBEPBEI3ITEKA: ocsita, Hayka, Texnika Ne 4 (24), 2024

CYBERSECURITY: ISSN 2663 - 4023
e EDUCATION, SCIENCE, TECHNIQUE

necessitate the additional function of ensuring delivery, it is well recognized for the ease with
which it transmits data and the effectiveness with which it does so. Applications built on the
UDP utilize it as a transport layer to establish reliable and highly effective transmissions. One
example of such applications is WireGuard Virtual Private Networks. UDP is frequently used
for two other applications such as transmission of real-time video streaming and the facilitation
of online gaming [1] — [7].

Simultaneously, the widespread use of Network Address Translation in contemporary
networking contexts introduces a different set of issues to the process of maintaining durable
UDP mappings, which are needed for ongoing communication. In order to alleviate the lack of
IPv4 addresses and increase security by masking internal IP addresses, network address
translation is necessary [8] — [14].

Unfortunately, there is a mismatch between the fundamental features of Network Address
Translation and the operational needs of programs that use User Datagram Protocol. Thus, this
research is aimed to present an investigation of methods that are expressly designed to
overcome these various limitations.

The purpose of this study is to conduct an analysis of the complexity of UDP mappings
in NAT systems. Additionally, the goal is to present an overview of the operational ideas that
underpin both UDP and NAT. In this research the implementation of NAT by VMware has
been done as a case study in order to shed light on the practical challenges that are encountered
when maintaining durable UDP mappings.

As an additional point of interest, this paper investigates a variety of proven and
innovative techniques to address challenges related to persistent UDP port mappings. In
addition to the strategic usage of empty UDP packets and the proposal of a unique NAT
mapping support protocol, these include modifications to port mapping Time to Live and static
port mapping. As a consequence of this, this article provides a comprehensive analysis of the
approaches that aim to enhance the dependability and efficiency of networked applications
when they are challenged with limits imposed by Network Address Translation (NAT).

WIREGUARD AS A UDP-BASED SERVICE EXAMPLE

We are going to go over each step that is necessary to establish a secure connection with
the main server so that we can ensure that we have a complete grasp of how WireGuard works.
The initiation of the operations begins with the creation of a virtual network interface.
Considering that it employs a high level of encryption in order to carry out its functions, this
interface is one of a kind. An IP address, which serves as the client’s unique identification on
the virtual network, is also provided to the client at the time of setup in order to protect the
confidentiality of the communication that takes place between the client and the server.
Furthermore, in order to establish a connection with other clients, it is necessary to possess their
public keys, IP addresses, and occasionally other setup data. For the WireGuard server to
successfully recognize a client trying to connect to it as a peer, only the client’s public and
preshared keys need to be added to the server’s configuration beforehand [15] — [17].

After being activated, the WireGuard interface takes any IP packets that it receives and
alters them. They are encapsulated into UDP packets, which is a method that tunnels the original
data by wrapping it with additional headers of the UDP transport layer protocol, effectively
transforming all the packets into datagrams. In addition to the encapsulation, the packet itself
will be encrypted with the client’s private key. This makes the data suitable for secure
transmission across the internet to peers that have been chosen. When it comes to protecting

322

BKIBEPBEITNEKA: OCBITa, HayKa, TeXHiKa Ne 4 (24), 2024

CYBERSECURITY: ISSN 2663 - 4023
) EDUCATION, SCIENCE, TECHNIQUE

one’s integrity and privacy, this encapsulation and encryption layer is very crucial. It ensures
that the information will be sent to the person who is supposed to receive it without being
intercepted or altered in any way. Additionally, thanks to the encryption, it is not even possible
for eavesdroppers to intercept the destination IP address [15].

The WireGuard operations flowchart is shown on the Fig. 1:

| IP Packet Arrival at WireGuard Interface I

\

Verification of Allowed IPs l

!

Authentication & Encryption (using WireGuard's private key)

v

| Packet Payload is Prepared |

v

| Encapsulation within UDP Packet |

v

Add WireGuard Header (contains public keys, nonces & metadata)

v

Calculate & Append Message Authentication Code (MAC)

v

UDP Packet Sent to Peer (via Internet)

v

Peer Receives UDP Packet

MAC Verification

| Decryption (using Peer's public key) |

Y

Verification of Nonce to Prevent Replay Attacks I

v

I IP Packet Delivered Securely |

Fig. 1. WireGuard operations flowchart

The public IP address of the server that is responsible for providing the WireGuard
encryption service should be known to clients in order for them to be able to connect with a
WireGuard server. The WireGuard server itself is able to automatically determine the external
address of each client. Due to the fact that this automated learning takes place the minute the
server receives data from a client that has been correctly authenticated, it makes it possible for
communication to continue in both ways without any interruptions occurring [15].

WireGuard demonstrates its flexibility by exhibiting its capacity to adjust to changes
whenever abrupt interruptions occur in a network such as public IP address changes. WireGuard
is able to handle this issue without any difficulty whatsoever, in contrast to traditional virtual
private network systems, which are prone to encountering failure and disconnections whenever

323

B KIBEPBE3INEKA: ocaira, Hayka, TexHika Ne 4 (24), 2024

CYBERSECURITY. v

they are used. The server instantly notifies each client connected to the network of any changes
occurring while the network is being updated, thus providing them with the ability to modify
their configurations without worrying about losing their connection [15] — [17].

The WireGuard operations schema is shown on the following Fig. 2:

i ________________ @ ________________ i Wireguard Client
: i T L

Client 2

Fig. 2. WireGuard interactions

WireGuard is based on the fundamental notion of Cryptokey Routing, which also serves
as the foundation for its operation. Through the utilization of this one-of-a-kind method, both
the reception and transmission of packets are directed. A connection is made between the public
key of a peer and each and every packet that is analyzed by WireGuard. The server performs
an examination of the source field whenever an incoming packet is encrypted or processed in
any other manner. If it is discovered that a packet matches an IP address that is contained within
the peer’s allowed IPs settings, then the packet is regarded to be valid and accepted. This dual
verification technique, which is based on the legality of the packet as well as its conformity
with the approved IPs, offers support for security measures [15] — [16].

WireGuard’s architectural framework is distinguished by a combination of simplicity and
ground-breaking innovations in the realm of security paradigms. This combination is what
makes that framework so unique. There are a number of features that it embodies, some of
which include, but are not limited to, robust encryption methods, a quick configuration
procedure, and an efficient routing mechanism. Because of this combination, it is not only
simpler to use, but it also guarantees a higher level of security, which makes it an appealing
alternative for a wide range of clients to select from.

324

K| BEPBE3IEKA: ocsita, Hayka, TexHika Ne 4 (24), 2024

CYBERSECURITY: ISSN 2663 - 4023
EDUCATION, SCIENCE, TECHNIQUE

UNDERSTANDING NAT THROUGH VMWARE'S IMPLEMENTATION

The birth of network address translation technology took place during the times when the
global network began to emerge as a widespread utility. Such rapid development in the
magnitude of connected clients simultaneously led to the problem of limited IP addresses. Due
to the fact that there could not be more than 232, or 4,294,967,296 1Pv4 addresses, engineers
had to come up with a solution for the ever-increasing demand for growth. As a result, we have
IPv6 that supports 2128 unique addresses, a number too big to write here. The new version of
the protocol solved the issue for future clients and infrastructure, but the global network still
consisted mostly of clients that did not support such protocols, and forcing a new version could
potentially break the existing infrastructure [8] — [10].

As with every technology in the ever-evolving field of computer science, engineers had
to find a temporary solution for everyone using the old version of the protocol. First and
foremost, tunneling is used to hop IPv6 packets over the nodes that support only IPv4. Using
such a technique, IPv6 packet gets temporarily incapsulated into an IPv4 packet. But the issue
for businesses that still used IPv4 stayed with the limitations of the number of IP addresses. In
addition to that, it is not desired to have every single server routed in the global network all the
time. For some services, occasional access to external resources is enough. For these purposes,
the NAT was created [11], [12].

The NAT operations flowchart is shown on the Fig. 3:

Internal Server External Server

L o o W W LK
I W Internal Server initiates a connection
-

Request to access ES, Port
— S 9‘

esne Allocate public IPand Port

Forward request to ES from ;
PortY

= - - - -
1

: ES procesges request |

----- - =l

Forward response to Port
X

Internal Server External Server

Fig. 3. NAT operations
Servers could use the private ranges of IP addresses for internal routing and for requesting

external resources; the connection had to be established through a NAT. There are a few
versions of NAT: some of them use a sliding window of IP addresses, and internal internal

325

BKIBEPBE3INTEKA: ocsita, Hayka, Texnika Ne 4 (24), 2024

CYBERSECURITY. v

servers would then try to acquire a public address to access the global network; others link
public IP addresses statically; but the most common version of NAT that is ubiquitous
nowadays is a port mapping NAT.

When the server from the internal network tries to connect to the global network, it will
send its traffic through NAT. Then NAT would associate one of its ports with this server,
effectively establishing a connection. NAT will then use one of its other ports to establish the
connection with the servers in the global network. In such a setup, NAT will sit exactly in the
middle of communication between internal and external servers. When the response from the
external server is received, NAT will use the saved combination of IP and port associated with
the port that received the request from the internal server [12] — [14].

This setup, even though it provides a great way to manage the limited amount of address
space and effectively provides a way for private servers to reach global resources, will still
restrict external clients from accessing such servers. Thus, it could both serve as a great security
solution and a limitation when the goal is to provide a service.

As virtualization was gaining momentum, VMware also provided their own
implementation of the entire virtualized network, including virtualized DNS, DHCP, network
segmentation, and most importantly for this paper — virtualized NAT [18].

The VMware Virtual Network schema is shown on the Fig. 4:

...

--

device - Virtual network adapter ;|
= ﬂ Virtual Machine

Client host machine

Fig. 4. VMware Virtual Network

326

B KIBEPBEI3NEKA: ocsira, HayKa, TexHiKa Ne 4 (24), 2024

CYBERSECURITY: ISSN 2663 - 4023

EDUCATION, SCIENCE, -TECHMQUE

Every Virtual Machine (VM) is connected to the internal virtualized implementation of
the network by VMware. Virtualized services such as DHCP and DNS provide the basic
network configuration needed to establish communication with both the host and other
virtualized peers. A virtual switch facilitates such connections by providing data link layer
commutation capabilities. This is a component that is capable of switching frames to the host’s
physical interface [18].

Even though the VM can access external resources, Network Address Translation mode will
disguise all network activity as though it originated from the host Operating System (OS). Guests
will be on a private subnet, with the host serving as a router and a firewall if configured. The VM
will be assigned to a distinct subnet, much like most wireless home networks. For example, if the
host computer’s IP address is 192.168.0.104 and VM’s is 192.168.121.100, the VM can access the
outside network just like the host, but it is shielded from direct outside access.

EVALUETING THE IMPACT OF UNSTABLE PORT MAPPING

While using WireGuard client on host and NAT for virtual machines managed by
VMware, connection drops or significantly slows down from time to time but could also be
restored if the WireGuard client gets reloaded.

The assumption is that the connection will drop due to a change in the VMware NAT
port. When the port changes, it's required to resend the request because the response won’t get
to the destination. It’s important to remember that WireGuard encapsulates all its data in UDP
datagrams [15] — [17]. Having said that, there is no guarantee of delivery on this layer, and such
guarantees depend entirely on the encapsulated logic. In some cases, where the incapsulated
layer does not provide strong reconnection capabilities, which could be the case for application
layer Layer protocls that rely on stable connections, the connection will be lost entirely.

Next step is to confirm such assumption by conducting a ports mapping test with Node.js
dgram module and Wireshark. At this stage, we’re going to send some UDP packages from a
virtualized Ubuntu Desktop distribution and listen for incoming UDP packages on a host
machine. We’ll also leverage Wireshark's capabilities to monitor local traffic. At this stage,
we’re using VMware virtual NAT implementaion.

The following is a code snippet for a server listening for UDP packages:

const dgram = require('dgram');
const server = dgram.createSocket ('udpd'):;

server.on('error', (err) => {
console.log(server error:\n${err.stack});
server.close () ;

1)

server.on('message', (msg, rinfo) => {
console.log(server got: ${msg} from ${rinfo.address}:${rinfo.port}");

1) ;
server.on('listening', () => {
const address = server.address();
console.log(server is listening ${address.address}:${address.port}’);

1)

server.bind(8000) ;

327

AKIBEPBEI3INEKA: ocaira, Hayka, textika Ne 4 (24), 2024

CYBERSECURITY. v

Next is a code of a client sending UDP packages:

const dgram = require('dgram') ;

const ADDRESS = '192.168.0.104"';

const PORT = 8000;

const INTERVAL = 1000;

const client = dgram.createSocket ('udpd');

client.send('Hello World!', 0, 12, PORT, ADDRESS, () => {
console.log(A message has been sent to ${ADDRESS}:S${PORT}");
1)

setInterval (() => {
client.send('Hello World!', 0, 12, PORT, ADDRESS, () => {
console.log(A message has been sent to ${ADDRESS}:S${PORT}");
1)
}, INTERVAL)

On the following figure, client is sending UDP packages with a 1-second interval:

server.bind(8000);

TERMINAL

.104:
.104:
.104:
104:
.104:
.1e4:
104:
104:
104:
.104:
.104:
.104:
.104:
.1e4:
.104:
.104:
.104:

server got: World! from .168.
server got: World! from .168.
server got: World! from .168.
server got: World! from .168.
server got: world! from .168.
server got: World! from .168.
server got: world! from .168.
server got: World! from .168.
server got: World! from .168.
server got: World! from .168.
server got: World! from .168.
server got: World! from .168.
server got: world! from .168.
server got: World! from .168.
server got: world! from .168.
server got: World! from .168.

server got: world! from .168.
]

Fig. 5. Logs of receiving UDP packages through NAT with a 1-second interval

(SRR B I oI B B G I B B o R Ao B BV G R

It is evident that the port mapping stays stable. NAT implementation by VMware uses
one of the techniques called port mapping TTL to avoid premature connection drops. Next
figure shows datagrams intercepted with the means of Wireshark:

328

MKIBEPBEIINTEKA: OCBITa, HayKa, TexHiKa Ne 4 (24), 2024

CYBERSECURITY. v

A
mEe X QEnEFST Q] QT
[Tudp 3 +
No. Time Source Destination Protocol Length Info A
251 455.083227 192.168.0.104 192.168.0.104 uoP 44 53953 » 8000 Len=12
252 456.085658 192.168.0.104 192.168.0.104 uDP 44 53953 » 8000 Len=12
253 457.086764 192.168.0.104 192.168.0.104 uoP 44 53953 » 8000 Len=12
254 458.088431 192.168.0.104 192.168.0.104 uop 44 53953 » 8000 Len=12
255 459.090203 192.168.0.104 192.168.0.104 uoP 44 53953 + 8000 Len=12
256 460.091532 192.168.0.104 192.168.0.104 uoP 44 53953 » 8000 Len=12
257 461.093356 192.168.0.104 192.168.0.104 uDP 44 53953 » 8000 Len=12
258 462.095514 192.168.0.104 192.168.0.104 uop 44 53953 » 8000 Len=12
250 463.006527 192.168.0.104 192.168.0.104 upp 44 53953 > 8000 Len=12 v
Frame 254: 44 bytes on wire (352 bits), 44 bytes captured (352 bits) 92 00 00 00 45 00 00 28 ab 5f 00 00 3f 11 00 00 E--(-_
Null/Loopback €0 a8 00 68 cO a8 00 68 d2 c1 1f 40 00 14 39 ba h---h ---@
Internet Protocol Version 4, Src: 192.168.0.104, Dst: 192.168.0.104 || 9920 48 65 6c 6¢c 6f 20 57 6f 72 6c 64 21 Hello Wo rld!

User Datagram Protocol, Src Port: 53953, Dst Port: 8000
v Data (12 bytes)
Data: 48656c6c6f205761726c6421
[Length: 12]

< > < >
7 Dpata (data.data), 12 byte(s) Packets: 276 * Displayed: 276 (100.0%) Profile: Default

Fig. 6. Intercepting 1-second interval packages with Wireshark
In the shown example, it seems that the communication endpoints remain stable due to

the mentioned technique: the source port is always the same, hence the connection is preserved.
Following is the case when a 1-minute interval is used:

server.bind(8000);

TERMINAL

4 [/d/Downloads/test

$ node server.js

server is listening 0.0.0.0:8000

server got: Hello World! from 192.168.0.104:56131
server got: Hello World! from 192.168.0.104:63600
server got: Hello World! from 192.168.0.104:53659
server got: Hello World! from 192.168.0.104:63180
server got: Hello World! from 192.168.0.104:51934

Fig. 7. Logs of receiving UDP packages through NAT with a 1-minute interval

By reading through the log messages from the server shown in the Fig. 7, it is becoming
obvious that the source port changes with each subsequent call.

329

B K|IBEPBE3NEKA: ocsita Hayka, TexHiKa Ne 4 (24), 2024

CYBERSECURITY. v

- |
.G R QuwEFTLI EQaql
'udp £3 +
No Time Source Destination Protocol Length Info !
86 48.349613 fe80::e8c7:acbb:a%.. £f02::c uoP 708 58100 » 3702 Len=656
87 48.349640 fe80::134c:5c84:731... ff02::c uoP 708 58100 » 3702 Len=656
88 48.349663 fe80: :55ea:b6b0:59c.. @2::c upbP 708 58100 » 3702 Len=656
89 48.349770 vl ffo2::c uoP 708 58100 » 3702 Len=656
106 57.229906 192.168.0.104 192.168.0.104 uopP 44 56131 » 8000 Len=12
128 117.260798 192.168.0.104 192.168.0.104 uoP 44 63600 > 8000 Len=12
151 177.268227 192.168.0.104 192.168.0.104 uopP 44 53659 » 8000 Len=12
168 237.279166 192.168.0.104 192.168.0.104 uop 44 53180 » 8000 Len=12
191 297.339528 192.168.0.104 192.168,0.104 UbP 44 51934 » 8000 Len=12 N
Frame 106: 44 bytes on wire (352 bits), 44 bytes captured (352 bits) 92 90 00 00 45 00 90 28 ab 52 00 00 3f 11 00 00 E--(‘R--7
Null/Loopback 0010 c0@ a8 00 68 cO a8 00 68 db 43 1f 40 00 14 31 32 ««+h h -c@
Internet Protocol Version 4, Src: 192.168.0.104, Dst: 192.168.0.104 48 65 6¢c 6c 6f 20 57 6f 72 6¢c 64 21 Hello Wo rld!
User Datagram Protocol, Src Port: 56131, Dst Port: 8000
v Data (12 bytes)
Data: 48656c6c6f20576f726c6421
[Length: 12]
< >« >
7 Data (data.data), 12 byte(s) Packets: 212 - Displayed: 212 (100.0%) Profile: Default

Fig. 8. Intercepting 1-minute interval packages with Wireshark

Having analyzed log messages and intercepted datagrams from Wireshark in Figs. 5-7, it
is obvious that VMware’s NAT implementation has port mapping Time to Live in place, and
as soon as it expires, the mapping gets released. This has to be done to avoid indefinitely taken
resources, but such an approach has its flows to manage: if the TTL is too low, then it’s possible
that the client would not be able to get replies at all in a congested network, and if the TTL is
too large, then clients could abuse the limited resources of the server. Remember that each client
communication through NAT takes two ports: one for incoming messages from the client and
another for incoming packages from remote servers, thus effectively limiting the amount of
alive mapping to 32768 in the best case. NAT can have multiple Network Interfaces but in order
for them to be of any use, they need to be assigned a routable IP address.

These issues eventually come down to a negotiable balance between resource utilization
on NAT and communication timing within the client-server connection it supports. In the
following chapters, we are going to examine existing solutions and propose our own.

EXISTING DURABLE PORT MAPPING SOLUTIONS

In the following chapter, we will discuss existing solutions for durable port mappings.
We will start with the common solution used inside provide networks called “Static Ports
Mapping” and examine why such a solution is not optimal for a general case and cannot be
used for most NAT systems used worldwide.

Static port mapping enables the forwarding of all incoming packages from a specified port
on the NAT to the port on the Ubuntu VM behind the NAT. Such mapping is durable and persistent,
the two key factors needed for specific kinds of applications like VPNs or gaming servers.

Such a solution allows duplex communication initiation. Since the port is statically
mapped and available on NAT’s interface that has a routable IP address assigned, the client
from outside the network can initiate the communication, as opposed to the traditional usage of
NAT that conceals the internal network members and architecture [19].

In VMware environments, you can configure static port mapping through the virtual
network editor. The configuration of the VMware NAT static mapping is show in Fig. 9 [19]:

330

BKIBEPBE3INTEKA: ocsita, Hayka, Texnika Ne 4 (24), 2024

CYBERSECURITY. v

28S-A... z = - JuUIEL A, 1Y£,1U0.£00.U

Connected Enabled 192.168.254.0 Subnet mask: 255.255.255.0
Connected Enabled 192.168.255.0

Gateway IP: | 192.168.255. 2

Part Fanwardina

rtual Machine 1P Addre

Host port: 8080 :

| Type: (OTce @uop
Add Network... : 7
| Virtual machine IP address: ’ 192 .168 .255.129 ‘
i i : 8000 =
ietwork) Virtual machine port: \ =
265 : Description: ’
| nally Unique Identifier
0K Cancel Help : ‘ 30 -
1etwork) ——
Config port: | 0 =
I
\dapter VMnet8 []Enable 1Pv6
ix: | fd15:4ba5:5a2b:1008::/64
ito VMs DHCP Settings... VG prefc ‘ !
isk: | 255.255.255. 0 | DNS Settings... | | NetBIOS Settings...

Fig. 9. VMware NAT static ports mapping

Even though it’s guaranteed now that the incoming packages will be sent on the same
port, this is just a partial solution since outgoing packages will still have their ports changed.
Having said that, this will not suffice as a general problem solution. Furthermore, it’s extremely
inefficient to hold a lot of static port mappings due to the limited resources discussed in the
previous sections. This approach cannot be used in an Internet Service Provider’s NAT due to
the sheer number of clients, elasticity, and scaling that it should provide.

It is also worth noting that even though in some cases it is beneficial to have a direct static
mapping to the outside network, in such a setup, the machine from a private network and the entire
private network, for that matter, become prone to security vulnerabilities since the outsiders can
effectively initiate connections, data requests, and traffic flow inside the private network.

Another common technique used to mitigate port mapping drops is to increase Time to Live
setting for the NAT device. TTL represents the duration for which a specific port mapping remains
valid when there’s no ongoing traffic. Finding a balanced value allows for both: decreasing the
degree of connection drops and reclaiming resources on NAT in an efficient way [20].

VMware allows you to configure port mapping TTL through the virtual network editor.
The configuration of the VMware NAT TTL is show in Fig. 10 [20]:

331

BKIBEPBE3INEKA: ocsita, Hayka, Textika Ne 4 (24), 2024

CYBERSECURITY: ISSN 2663 - 4023
) EDUCATION, SCIENCE, TECHNIQUE

Network: vmnets
Subnet IP: 192.168.255.0
Subnet mask: 255.255.255.0

Name Type External Connection Host Connection DHCP Subnet Address

VMnet0 Bridged Intel(R) Dual Band Wireless-A... - - =

VMnet1 Host-only - Connected Enabled 192.168.254.0

VMnet8 NAT NAT C cted Enabled 192.168.255.0

ne nece e Gateway IP: 192.168.255. 2
Port Forwarding

Host Port Type Virtual Machine IP Address Description

Add Network... Remove Network
Add...

VMnet Information
(O Bridged (connect VMs directly to the external network) Advanced
[“] Allow active FTP

[“] Allow any Organizationally Unique Identifier

Bridged to: Intel(R) Dual Band Wireless-AC 8265

(® NAT (shared host's IP address with VMs) NAT Settings... r -
UDP timeout (in seconds): | 30 <
() Host-only (connect VMs internally in a private network) :

Config port: 0

Connect a host virtual adapter to this network

Enable IPv6
Host virtual adapter name: VMware Network Adapter VMnet8 D napie

. | fd15:4ba5:5a2b:1008::/64
Use local DHCP service to distribute TP address to VMs DHCP Settings... IPVG prefi:

Subnet IP: | 192.168 .255. 0 Subnet mask: | 255.255.255. 0 DNS Settings... NetBIOS Settings...

Restore Defaults Import... Export... OK Cancel pply Help oK Cancel Help

Fig. 10. VMware NAT configuration

VMware virtual NAT allows for increased TTL for port mappings, which is beneficial
for maintaining connections during extended periods of inactivity [20]. Applications that
require persistent connections in order to ensure safe and robust communication, such as
WireGuard, benefit tremendously from this feature. Because unused mappings consume NAT
table entries for extended periods of time, overly long TTLs can lead to an inefficient use of
network resources. Leaving open ports of internal services that do not have security measures
necessary for managing incoming requests from the outside network for extended periods of
time may put the entire network at risk of being compromised. The goal here is to find a balance
where the TTL is long enough to sustain essential connections but not so long that it causes a
security risk.

When the configuration of the network is constantly altered, it may be beneficial to
increase the TTL by a reasonable amount. It is also worth noting that a longer TTL might be
more suited in cases where devices require open ports on a constant basis, such as voice
streaming or VPN connection.

Setting a TTL that somewhat higher than the default will help reduce interruptions caused
by reauthentication or reconnection procedures that are triggered by expired NAT port
mappings. This is especially applicable to WireGuard implementations that are situated within
a NAT-based environment since it incapsulates all the traffic in the UDP packages, and each
NAT mapping drop will require all encapsulated logic to follow the reconnection procedures.
In cases with TCP, it would require going through the process of a three-way handshake again;
in cases with TLS, it would require yet again exchanging the key and verifying the certificates;
and if there was any other higher-level logic that depended on such a connection, it would
require calling its own connection failure procedures.

Finally, one of the most common techniques used for keeping the data streaming
connections alive is sending an empty UDP package in order to artificially reset the NAT port
mapping TTL [21].

The following Fig. 11 illustrates the diagram of NAT mapping refreshing process [21]:

332

KIBEPDH E3 [TEKA: OCBIiTa, Hayka, TexHika No 4 (24), 2024

CYBERSECURITY: ISSN 2663 - 4023
) EDUCATION, SCIENCE, TECHNIQUE
"Client Device" ENAT Device"

"Remote Server"

Empty UDP Packet (Header- E
only)

P acket Transmission%

-—— -

l

"Client Device" "NAT Device" "Remote Server"”

Fig. 11. NAT mapping refreshing diagram

After the TTL has elapsed, NAT devices will close ports and drop mappings from the
table that were not actively used in the past. Sending an empty packet in such a case assures
that the NAT device will notice activity on the port, which will then cause the TTL to get reset.
This kind of datagram does not have a payload, but it still follows the protocol-defined structure
perfectly and has the header information, which includes source and destination ports as well
as IP addresses. The TTL associated with the port mapping is refreshed because the NAT device
interprets this packet as genuine traffic when it gets it.

The following code snippet show a functioning of a simple NAT mapping refresher:

const dgram = require('dgram');
const client = dgram.createSocket ('udpd');

function keepAlive () {
const message = Buffer.from('');
client.send(message, 0, message.length, PORT, HOST, (err) => {
if (err) {
console.error ('Failed to send keep-alive packet:', err);
} else {
console.log('Keep-alive packet sent');

setInterval (keepAlive, 300000) ;

333

BKIBEPBEI3ITEKA: ocsita, Hayka, Textika Ne 4 (24), 2024

CYBERSECURITY: ISSN 2663 - 4023
e EDUCATION, SCIENCE, TECHNIQUE

Having said that and seen the implementation, we can confidently say that among the
advantages of such method is that the implementation of this method is simple, it does not need
any complicated configuration adjustments in the network architecture, and additionally, this
approach is resource-efficient due to the fact that UDP packets, particularly empty ones, are
quite tiny and need just a minimum amount of processing. In situations where re-establishing
connections might be expensive or technically difficult, it is very helpful to have this capability.

It is should be mentioned that long living mappings could pose a threat if malicious actors
have successfully identified port mapping behind NAT and no additional security measures are
in place. Also, the issue with this method is that it can generate too much network traffic if a
large number of devices use it all the time and the efficacy of this method depends on the
configuration of the NAT, because some of them may have mechanisms to detect and block
these keep-alive strategies.

DEVELOPING A NAT MAPPING SUPPORT PROTOCOL (NMSP)

In order to permit dynamic TTL management and continue to ensure compatibility with
systems that do not support this extension, the protocol combines an upgraded payload inside a
conventional UDP datagram. When the UDP header is first created, it is structured in a normal
manner. It includes fields such as the source and destination ports, the length of the packet
(which is determined entirely by the standard UDP header and the initial payload), and a
checksum that encompasses the standard datagram without enhancement. Next, the initial
payload is added, which could be a simple message such as “Hello, this is a standard message”.
This is followed by the enhanced section. Any device that does not recognize the improved
structure will be able to handle the message normally, just like any other conventional UDP
datagram, thanks to this.

A magic number, such as 0x004c652043686174, designates the beginning of the
enhanced section, which comes immediately after the first payload. For complying devices, this
identification serves as a signal that extra data is following, which requires particular
processing. In the subsequent byte, which is known as the Flags byte, there are several
indicators: the first bit ensures that a specified TTL is adhered to if it is set (mandatory), the
second bit allows for TTL adjustment within a range (adjustable), and the third bit triggers an
immediate response from the natural language processing (NAT) with its TTL settings if it is
set (immediate response).

Within the subsequent segment, the TTL settings themselves are provided, and the length
of this segment is specified (for example, 0x0014 for several 6-byte records in addition to a
checksum as an example). For the client, each NAT device that the packet passes through, and
the final receiver, each TTL record is appended, and the records length should be updated. This
record includes the desired TTL, the maximum TTL, and the minimum TTL time.

With the use of a straightforward sum modulo 65536, a checksum is computed across all
of the TTL fields in order to verify the accuracy of the data. After receiving this packet, a device
that is compatible will identify the magic number and then proceed to process the TTL settings
in accordance with the information.

Every transitioned target node (NATs and the recipient) should instantly send back a
packet that has its own TTL values when the Immediate Response flag is set to the “on” mode.
This makes it possible for dynamic feedback to be sent back and avoid situations where the
recipient does not support the protocol and won’t send the eventual data records. On the other

334

JKISEPBESMEKA: ocarma nayia, remika e @o),20

CYBERSECURITY: ISSN 2663 - 4023
y) EDUCATION, SCIENCE, TECHNIQUE

hand, devices that do not adhere to the standard disregard the data that has been added to the
packet and proceed to handle it as if it were any other UDP datagram possible.

Having such a setup, the protocol is guaranteed to be backwards compatible, and it
guarantees that legacy systems will continue to function without any interruptions.
Additionally, this well-considered design makes it feasible for the protocol to be simply
included into pre-existing network infrastructures, while at the same time giving expanded
capabilities for network management and diagnostics across all platforms that are supported.

Section]_UDPHeader

-Source Port : 2 bytes
-Destination Port : 2 bytes
-Length : 2 bytes

-Checksum : 2 bytes

SectionI|_OriginalPayload

-Example Payload : String

SectionllI_EnhancedPayload

-Magic Number : 8 bytes
-Flags : 1 byte

-TTL Settings Length : 2 bytes
Flags details
-TTL Records details: varying length

-TTL Checksum: 2 bytes TTL Records details

TTLRecords

-Client Record : 6 bytes

-NAT_1 Record : 6 bytes

-NAT _n Record : 6 bytes

-Recipient Record : 6 bytes

Fig. 12. Protocol’s datagram structure

335

UKIBEPBEINTEKA: ocsira, Hayka, Texika Ne 4 (24), 2024

CYBERSECURITY: ISSN 2663 - 4023
g EDUCATION, SCIENCE, TECHNIQUE

Section I: UDP Header
Description: standard components as defined by the UDP protocol.
Structure:
= Source Port (2 bytes)
= Destination Port (2 bytes)
= Length (2 bytes) — This field includes the length of the standard UDP header and
original payload without appended enhanced data.
= Checksum (2 bytes) — Covers the entire packet.
Section 11: Original Payload
Description: The application data intended for the recipient, placed immediately after the
UDP header to ensure that non-compliant devices process the packet as a normal UDP datagram:
Example Payload: “Hello, this is a standard message”.
Section I11: Enhanced Payload
Description: Appended after the original payload, containing the Magic Number and TTL
settings.
Structure:
= Magic Number (8 bytes)
o Description: A unique identifier that signifies the beginning of the
enhanced portion of the payload.
o Example: 0x004c652043686174
= Flags (1 byte)
o Description: Bits set to indicate how the packet should be handled.
o Structure:
= Bit 0 (Mandatory): If set, the desired TTL must be adhered to.
= Bit 1 (Adjustable): Allows NAT to adjust the TTL within a
specified range.
= Bit 2 (Immediate Response): If set, instructs the NAT to respond
immediately with its TTL settings.
= Remaining Bits: Reserved for future use.
o Example: 0x07 (All three features are enabled).
= TTL Settings Length (2 bytes)
o Description: Specifies the length of the TTL settings data that follows,
including all records and the checksum.
o Example: 0x0014 (for 3 records each 6 bytes and a 2-byte checksum).
= TTL Records
o Description: Each NAT device appends a 6-byte record of its TTL settings.
o Record Format: Desired TTL (2 bytes), Max TTL (2 bytes), Min TTL (2
bytes)
o Examples:
= Client Record: 0300, OE10, 012C (Desired: 768 seconds, Max:
3600 seconds, Min: 300 seconds)
= NAT Record: Similar format, added by each NAT through which
the packet passes.
= Recipient Record: Reflects the end recipient’s TTL preferences.
= TTL Checksum (2 bytes)
o Description: A checksum computed over all TTL records to ensure
integrity.
o Calculation: Simple sum of TTL fields values, modulo 65536.

336

BKIBEPBE3INEKA: ocsita, Hayka, Textika Ne 4 (24), 2024

' CYBERSECURITY: ISSN 2663 - 4023
\ _ -’_1_7_’,_‘ EDUCATION, SCIENCE, TECHNIQUE

Packet Processing and Response Mechanism
e For Compliant Devices: Recognize the Magic Number and process the appended
TTL settings. If the Immediate Response flag is set, the NAT device sends back a
packet containing its TTL settings to the sender immediately.
e For Non-Compliant Devices: Treat the entire packet as a standard UDP datagram,
ignoring the data after the original payload.
Example of Full Packet Structure:

[UDP Header] | [Original Payload: "Hello, this is a standard message."] |
[Magic Number: 0x004c652043686174] | [Flags: 0x07] | [TTL Settings
Length: 0x0008] | [Client Record: 0300, OE10, 012C] | [TTL Checksum]

After having a complete round trip picture of TTLs used by all the target transitional
nodes, they can adjust its intervals of sending empty UDP packages to keep the binding alive.
Such enhancement allows for more efficient use of network resources and allows to find the
balanced interval for reaffirming the binding in an automated way.

The protocol is constructed to be fully compatible with the existing infrastructure. It is
not required for any intermediate NAT or eventual recipient to be able to handle extended
payload. The target process on the receiver’s end should not even pass the enhanced payload
part to the target process since it will be outside of a specified UDP datagram length.

Such property is invaluable in the current enormous network environment where it
absolutely should be expected that the new protocol will not be adopted any time soon by most
of the networking infrastructure and peers.

CONCLUSIONS

This article critically analyzes both established and new ways, methods, and technologies
to construct a reliable, efficient, and secure modern network infrastructure that supports long-
lived UDP port forwarding mappings in each chapter.

In this study, the complexity of developing and maintaining UDP-based apps like video
streaming platforms, live chats, and virtual private networks was assessed. We’ve discussed
how important it is to manage UDP-based data transfers in NAT-based environments.

Through a deep investigation of the internal operations of the WireGuard VPN protocol,
we have covered the fundamental principles and challenges that arise in such an architecture.
With the security, efficiency, and effectiveness of the network address translation technology
came the exhaustive problem of inefficient management of network traffic and abruptly
dropped connections.

We conducted a thorough overview and analysis of common techniques, methods, and
technologies used to mitigate such issues. Through a comprehensive study of the internal
workings of VMware’s Network Address Translation, we have seen how the issue arises and
the most basic solutions that could potentially mitigate such a problem with the built-in
functions of VMware. The practical demonstration with simple Node.js scripts, VMware’s
NAT, and Wireshark has shown the core principles of NATs that encompass the issues with
unstable UDP data streaming.

As a result of such investigation, in this article, a new method of building reliable data
streams based on UDP transport has been proposed, its applications have been described in
great detail, and potential limitations have been shown, which could spark additional future
discussions and research regarding this issue.

337

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

UKIBEPBEINTEKA: ocsira, Hayka, Texika Ne 4 (24), 2024

CYBERSECURITY: ISSN 2663 - 4023
) EDUCATION, SCIENCE, TECHNIQUE

REFERENCES (TRANSLATED AND TRANSLITERATED)

IETF. (n.d.). Internet Engineering Task Force. https://www.ietf.org/rfc/rfc0768.txt

IBM documentation. (n.d.). IBM in Deutschland, Osterreich und der Schweiz.

Advantages of UDP | disadvantages of UDP. (n.d.). RF Wireless Vendors and Resources | RF Wireless
World. https://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-UDP.html
Javatpoint. (n.d.). UDP protocol | user datagram protocol - javatpoint. https://www.javatpoint.com/udp-
protocol

ClouDNS Blog. (n.d.)). UDP (user datagram protocol) explained in details - cloudns blog.
https://www.cloudns.net/blog/udp-user-datagram-protocol-explained-in-details/

Khan Academy. (n.d.). User datagram protocol (UDP) (article) | khan academy.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f
4a7ff015e7d:transporting-packets/a/user-datagram-protocol-udp

bunny.net. (n.d.). What is user datagram protocol(udp)? What are its benefits?. What Is User Datagram
Protocol(UDP)? What are its benefits? https://bunny.net/academy/network/what-is-user-datagram-
protocol-udp-and-how-does-it-work/

Chapter 1 - an introduction to network address translation. Microsoft Learn: Build skills that open doors
in your career. (n.d.). https://learn.microsoft.com/en-us/azure/rtos/netx-duo/netx-duo-nat/chapterl

Hanna, K. T., & Burke, J. (2024). What is network address translation (NAT) and how does it work?.
Networking. https://mwww.techtarget.com/searchnetworking/definition/Network-Address-Translation-NAT
CompTIA. (n.d.). Network address translation definition | how NAT works | computer networks | comptia.
https://www.comptia.org/content/guides/what-is-network-address-translation

GeeksforGeeks. (n.d.). Network address translation (NAT) - geeksforgeeks.
https://www.geeksforgeeks.org/network-address-translation-nat/

Fortinet. (n.d.). What is NAT (network address translation)? How does NAT work?.
https://www.fortinet.com/lat/resources/cyberglossary/network-address-translation

Avi Networks. (n.d.). What is network address translation? | avi networks.
https://avinetworks.com/glossary/network-address-translation/
Cisco. (n.d.). What is network address translation (NAT)?

https://www.cisco.com/c/en/us/products/routers/network-address-translation.html#:~:text=Network%20
Address%20Translation%20(NAT)%20is,sent%20t0%20an%20external%20network. (date of access:
17.02.2024).

NDSS Symposium. (n.d.). WireGuard: next generation kernel network tunnel - NDSS symposium.
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-
network-tunnel/

WireGuard: fast, modern, secure VPN tunnel. (n.d.). https://www.wireguard.com/

NordLayer. (n.d.). What is WireGuard protocol? | NordLayer Learn. Network Access & Security Solutions.
https://nordlayer.com/learn/vpn/wireguard/?gad_source=1&gclid=CjwKCAjw_e2wBhAEEiwAyFF
Fo30_v0ylDaH_TOpBVCSGjs6vjr_nykdMmznFsK9MiVH_5yB3CbmX4hoCeW4QAvVD BwE
VMware Docs Home. (n.d.). Understanding virtual networking components.
https://docs.vmware.com/en/\VMware-Workstation-Pro/17/com.vmware.ws.using.doc/GUID-8FDE7881-
C31F-487F-BEF3-B2107A21DO0CE.html

VMware Docs Home. (n.d.). Using the virtual network editor. https://docs.vmware.com/en/VVMware-
Workstation-Pro/17/com.vmware.ws.using.doc/GUID-AC956B17-30BA-45F7-9A39-
DCCB96B0A713.html

VMware Docs Home. (n.d.). Configuring network address translation.
https://docs.vmware.com/en/\VMware-Workstation-Pro/17/com.vmware.ws.using.doc/GUID-89311E3D-
CCA9-4ECC-AF5C-C52BE6AB9A95.html

Halkes, G., Pouwelse, J. (2011). UDP NAT and Firewall Puncturing in the Wild. NETWORKING 2011.
Lecture Notes in Computer Science, Vol. 6641. https://doi.org/10.1007/978-3-642-20798-3 1

338

MKIBEPBEIINTEKA: OCBITa, HayKa, TexHiKa Ne 4 (24), 2024

CYBERSECURITY. v

KotoB Makcum CepriiioBua

Marictp kibepOe3neku, CTYACHT Kadenpu KibepOe3nekn Ta 3aXucTy iHopmartii
KuiBcbkuii HamioHanpHUN yHiBepcuTeT iMeHi Tapaca [lleBuenka, KuiB, Ykpaina
ORCID ID: 0000-0003-1153-3198

maksym_kotov@ukr.net

Tomarona Cepriii BacuiboBu4

I.T.H., Ipodecop, mpodecop kadeapu kidepOe3neku Ta 3aXucty iHdopMarrii
KuiBcekuii HamioHampHUN yHiBepcuTeT iMeHi Tapaca [lleBuenka, KuiB, Ykpaina
ORCID ID: 0000-0002-1919-9174

tolupa@i.ua

METO/IA CTBOPEHHSI HAJIIMHUX CIIIBCTABJIEHb UDP IIOPTIB ¥
CEPEJIOBHIII HA OCHOBI NAT

AHoTaniss. BukopuctaHHs TPOTOKONIB 0e3 BCTaHOBICHHsS 3’eaHaHb, Takux sk UDP (User
Datagram Protocol) crae Bce Oinblll Ba)KIMBUM y CyYacHHUX IU(POBUX Mepekax, siki HOCTiHHO
PO3LIMPIOIOTHCS Ta CTAIOTh Bee Oubl cknaaaumi. [linTtpumka Binoopaxens UDP y cepenoBuiiax
Ha ocHOBi NAT, HaniiiHuii 1 Oe3niepeOiiiHMiT 3B’ SI30K sl Pi3HUX 3aBJaHb, TAKHX SIK OMEpaTHBHA
nepejaya JaHuX 1 BCTAHOBJICHHSI OE3MeUHUX 3’ €/IHaHb Yepe3 BipTyasbHi npuBaTHi Mepexi (VPN),
sk-oT WireGuard, € Haa3BHUaiiHO BaXKiTMBUMU. TpaHcisiis mepekeBux aapec (NAT) e BaxInBo0O
YaCTHHOIO BHPILLIEHHS NpoOJieMH 0OMEXeHOI KIIBKOCTI riIo0ajibHUX ajjpec [HTepHeT-npoToKony
(IP) i migBuIieHHs Oe3NeKN MEPeX, IPUXOBYIOUHN MPUBATHI Mepexi. OJJHAK TPAHCIISALIST MEPEKEBUX
aapec (NAT) cTBoproe HU3KY poOIieM, OJIHIEIO 3 SIKUX € IMHaMI4YHe TPU3HAYCHHsI HOMEPIB MOPTIB,
IO MOTEHLIHHO MOXE TMPHU3BECTH 110 MepedoiB y 3’€nHaHHAX. MeTor i€l CTaTTi € IOKJIaHe
nosicieHHst ynkuionyBanHs WireGuard, npuniisiodn ocoOJIMBY yBary Ba)KJIMBOCTI HaAIHHHUX
BigoOpaxenb UDP s nocsrHeHHs MakcumanbHOI mpoxyktuBHocti. Kpim Toro, y crarti
posrisaaeThes pimenHs VMware aist paHcisinii mepexeBux aapec (NAT), o6 npoiiroctpyBaTu
npobiieMu, OB’ si3aHi 3 miATpUMKOO 3ictaiaeHHs UDP. ¥V wiit cTaTTi npoBOOUTHCS JOCIIIKEHHS
0araThb0X METO/IIB 1 IOTOYHUX PillleHb, SIKi Oy/K po3poOIIeHi /jist BUPIIIEHHS LUX npooieM. Jeski 3
peani3oBaHMX CTpaTeriii BKIIOYAIOTh BUKOPUCTAHHS CTATUYHOTO BiZOOpa)X€HHS IOPTIB st
BCTaHOBJICHHsS HajiiiHoro Mmapuipyry uepe3 NAT, posmmpenns uwacy xurrs (TTL) mis
BiJIOOpa)KeHHs MOPTIB ISl 3MEHIIECHHS KiJIbKOCTI PO3PUBIB 3’€HAHHS Ta MiAXiJ HaJCHUIaHHS
nopoxHix UDP-nakeriB, mo0 30eperts axTuBHI BimoOpaxenHs. Ha nomatok m0 1poro,
3aMpoIOHOBAHO HOBY KOHIIEMIIIIO: MPOTOKOIM Juis mpoctoro 3ictaBieHHs NAT, skuii HaMaraetsest
cripoctuTH npouec 3MiHu Yactotu UDP-30u1iB, BuMaratoun Bij mpuctpoiB NAT po3kpuBaTi cBoi
nanamryBanHss TTL. Mera mporo mportokoiay — 3podutu BinoOpaxenHs NAT nermum i
e(pEeKTHBHIIINM 3 TOYKH 30PY 3aTaIbHOI'0 MEPEKEBOTr0 Tpadiky.

Kuarouogi cioa: Network Address Translation (NAT); User Datagram Protocol (UDP); siptyanbhi
npuBatai Mepexi (VPNS); WireGuard; VMware; criiike cmiBcraBnenas UDP; gac &uTTs
criBcrasienss moptis (TTL); craTudse criBcTaBIEHHS TIOPTIiB; MPOTOKOIT ITiITPHMKH CITIBCTaBJICHb
NAT; HamiitHiCTE MEpeXi; ONTUMI3aIlisl MEPEXKEBOI B3a€MOJIII.

CIIMCOK BUKOPUCTAHUX J/KEPEJI

1. IETF. (n.d.). Internet Engineering Task Force. https://www.ietf.org/rfc/rfc0768.txt

IBM documentation. (n.d.). IBM in Deutschland, Osterreich und der Schweiz.

3. Advantages of UDP | disadvantages of UDP. (n.d.). RF Wireless Vendors and Resources | RF Wireless
World. https://mww.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-UDP.html

4. Javatpoint. (n.d.). UDP protocol | user datagram protocol - javatpoint. https://www.javatpoint.com/udp-
protocol

5. ClouDNS Blog. (n.d.). UDP (user datagram protocol) explained in details - cloudns blog.
https://mww.cloudns.net/blog/udp-user-datagram-protocol-explained-in-details/

n

339

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

AKIBEPBEINTEKA: ocaira, Hayka, TexHika Ne 4 (24), 2024

CYBERSECURITY. v

Khan Academy. (n.d.). User datagram protocol (UDP) (article) | khan academy.
https://www.khanacademy.org/computing/computers-and-internet/xcae6f4a7ff015e7d:the-internet/xcae6f
4a7ff015e7d:transporting-packets/a/user-datagram-protocol-udp

bunny.net. (n.d.). What is user datagram protocol(udp)? What are its benefits?. What Is User Datagram
Protocol(UDP)? What are its benefits? https://bunny.net/academy/network/what-is-user-datagram-
protocol-udp-and-how-does-it-work/

Chapter 1 - an introduction to network address translation. Microsoft Learn: Build skills that open doors
in your career. (n.d.). https://learn.microsoft.com/en-us/azure/rtos/netx-duo/netx-duo-nat/chapterl

Hanna, K. T., & Burke, J. (2024). What is network address translation (NAT) and how does it work?.
Networking. https://mwww.techtarget.com/searchnetworking/definition/Network-Address-Translation-NAT
CompTIA. (n.d.). Network address translation definition | how NAT works | computer networks | comptia.
https://www.comptia.org/content/guides/what-is-network-address-translation

GeeksforGeeks. (n.d.). Network address translation (NAT) - geeksforgeeks.
https://www.geeksforgeeks.org/network-address-translation-nat/

Fortinet. (n.d.). What is NAT (network address translation)? How does NAT work?.
https://www.fortinet.com/lat/resources/cyberglossary/network-address-translation

Avi Networks. (n.d.). What is network address translation? | avi networks.
https://avinetworks.com/glossary/network-address-translation/

Cisco. (n.d.). What is network address translation (NAT)?
https://www.cisco.com/c/en/us/products/routers/network-address-translation.html#:~:text=Network%20
Address%20Translation%20(NAT)%20is,sent%20t0%20an%20external%20network. (date of access:
17.02.2024).

NDSS Symposium. (n.d.). WireGuard: next generation kernel network tunnel - NDSS symposium.
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-
network-tunnel/

WireGuard: fast, modern, secure VPN tunnel. (n.d.). https://www.wireguard.com/

NordLayer. (n.d.). What is WireGuard protocol? | NordLayer Learn. Network Access & Security Solutions.
https://nordlayer.com/learn/vpn/wireguard/?gad_source=1&gclid=CjwKCAjw_e2wBhAEEiwAyFF
Fo30_v0ylDaH_TOpBVCSGjs6vjr_nykdMmznFsK9MiVH_5yB3CbmX4hoCeW4QAvVD BwE
VMware Docs Home. (n.d.). Understanding virtual networking components.
https://docs.vmware.com/en/\VMware-Workstation-Pro/17/com.vmware.ws.using.doc/GUID-8FDE7881-
C31F-487F-BEF3-B2107A21DOCE.html

VMware Docs Home. (n.d.). Using the virtual network editor. https://docs.vmware.com/en/VVMware-
Workstation-Pro/17/com.vmware.ws.using.doc/GUID-AC956B17-30BA-45F7-9A39-
DCCB96B0A713.html

VMware Docs Home. (n.d.). Configuring network address translation.
https://docs.vmware.com/en/VMware-Workstation-Pro/17/com.vmware.ws.using.doc/GUID-89311E3D-
CCA9-4ECC-AF5C-C52BE6AB9A95.html

Halkes, G., Pouwelse, J. (2011). UDP NAT and Firewall Puncturing in the Wild. NETWORKING 2011.
Lecture Notes in Computer Science, Vol. 6641. https://doi.org/10.1007/978-3-642-20798-3 1

This work is licensed under Creative Commons Attribution-noncommercial-sharealike 4.0 International License.

340

http://creativecommons.org/licenses/by-nc-sa/4.0/

