|'<| B E pB E3 |_] E KA OCBITa, Hayka, TexHikKa

Ne 3 (27), 2025

CYBERSECURITY:

DOI 10.28925/2663-4023.2025.27.724
UDC 004.49

lllia Suprunenko

Postgraduate Student at the Department of

Informational Security and Computer Engineering

Cherkasy State Technological University, Cherkasy, Ukraine
ORCID ID: 0000-0002-1188-4804
i.0.suprunenko.asp22@chdtu.edu.ua

Volodymyr Rudnytskyi

Doctor of Engineering Science,

Department of Informational Security and Computer Engineering
Cherkasy State Technological University, Cherkasy, Ukraine

Chief Researcher

State Scientific Research Institute of Armament and Military Equipment
Testing and Certification, Cherkasy, Ukraine

ORCID ID: 0000-0003-3473-7433

rvn_2008@ukr.net

CLOUD BASED ARCHITECTURE FOR

ISSN 2663 - 4023

ADAPTIVE LOGGING METHOD IMPLEMENTATION

Abstract. Software technology drives a considerable amount of day-to-day processes, changing and
shifting the usual way of doing things and can even provide a great aid in times of crisis. From virtual
private network solutions that helped battling challenges of remote work models that were necessary
during initial outbreaks of COVID-19, to artificial intelligence solutions, that transform the way people
learn and research information, and cloud compute models altering the way software is written and
deployed — the change is everywhere. But it also brings new dilemmas, including those related to
security of software and its consumers, which means that proper protection and control over computer
programs is still in high demand. This paper takes a deeper look at the observability aspect of
cybersecurity and presents a model of how theoretical aspects of adaptive logging method can be
deployed in a real-life web-server scenario. The model is based on the infrastructure provided by one
of the largest cloud computing platforms providers and shows the application and mapping of two
important formal definitions to real world services. The applicability of adaptive approach is verified
and it is demonstrated that a considerable number of compute platforms should be able to incorporate
and execute all the necessary components, making it suitable for different applications and use cases.
Also the exclusion of dedicated security mechanisms in the formal definitions of adaptive logging
method is shown to be a viable method of operation, given that services provided by the cloud can
enforce necessary degree of security and still be transparent to the implementation itself.

Keywords: cybersecurity; observability; logging; debugging; cloud infrastructure; architectural model.

INTRODUCTION

Software programs influence a vast number of different aspects of human lives such as

studying, getting information about recent discoveries and events, connecting with other
people, completing work related tasks, shopping, creating art, researching, etc. This brings new

everyday possibilities and can even drastically change the ordinary way of doing things. And
yet it is crucial to not get overwhelmed by new opportunities and be prepared to face challenges

that immediately follow technical progress and innovations.

Problem statement. This research is mainly related to the observability aspect of
cybersecurity and how technological progress calls for better and more precise solutions.

© I. Suprunenko, V. Rudnytskyi, 2025

BKIDEPBEI3SINTEKA: ocaira, Hayka, Textika Ne 3 (27), 2025

CYBERSECURITY: ISSN 2663 - 4023
EDUCATION, SCIENCE, TECHNIQUE

Literature review. Over the last 10-15 years the role of software technologies became
more influential and helped to overcome some of the biggest challenges in recent history.
During the initial lockdown periods of COVID-19 pandemic in 2020 a huge challenge for
society was to avoid halting interactions and production of goods and services. But what was
previously an ordinary way of things, like commuting to work and meeting with colleagues to
discuss work related tasks, was almost impossible to imagine during periods when the main
task was to flatten the curve and slow down the spread of pandemic. And so many businesses
and workplaces moved to remote working models, but with this came new complications:
communications between employees should be protected as now they no longer have the safety
of eye-to-eye communication. A solution for such an issue was presented in a form of services
that utilized technology of virtual private networks (VPNSs) to secure communications. It was
observed that the demand for those grew by 200% and remained at elevated levels even during
the fall of 2020, when first lockdowns were easing off [1]. What’s noticeable is that the increase
in VPN traffic was mainly observed during working hours which additionally supports the idea
that this was a response to a new massive challenge and software technologies played an
important role in figuring out new reality.

Some other recent major technological advancements are machine learning techniques
and artificial intelligence algorithms based on large language models (LLMSs). The rise of
natural language processing solutions, such as ChatGPT by OpenAl which uses large processed
datasets to generate text responses to queries, affected different fields, for example in relation
to higher education. It is now possible to have a personalized learning experience with on-
demand support in the form of reviews or even virtual assistants that can aid in understanding
a given subject better [2]. But the possibilities are not limited to textual and conversation-like
formats: synthesizing and generating videos, as well as replacing fragments or faces in videos of
someone talking are now achievable with the use of Al [3]. And yet there are certain dangers
related to such technological innovations: a study shows that increasing speed and complex
decision driven logic of Al-driven cyberattacks will make existing cyber defense measures
outdated [4]. As different elements in the cybersecurity kill chain have different ways to utilize
artificial intelligence (reconnaissance, access and penetration, delivery, exploitation or action on
objectives,) it is increasingly important to invest in appropriate — possibly also Al-based —
cybersecurity measures that can help battling new emerging threats.

The rise of complex and sophisticated software solutions also affected the way the final
product reaches its consumers, as well as altered the requirements for scale and performance.
From simple web servers that work in a stateless request-response manner to more complicated
tasks like training large language models, it becomes quite common to rely on cloud computing
services rather than on establishing one’s own infrastructure manually. The move to cloud
computing model was also observed in universities [5], as it is an important step in online
education, globalization, high and constantly changing requirements. Even though the adoption
percentage was fairly low, with around 71% of respondents from different IT departments in
universities stating that they do not think to change their current computing model, it is still
considered to be a conceivable next step. And as different programming solutions are more and
more written with the help of — and for — the cloud, the concerns related to observability
aspects of cybersecurity also shift. Oftentimes to properly manage, monitor and keep track of
program’s execution somewhere on a remote machine a special service is needed. For example,
the Microsoft Azure cloud platform provides special utilities, such as Azure Monitor and Azure
DevOps Services [6], to help developers collect, analyze and act on recorded data to maximize
availability and track issues in their products. As more and more workloads move to cloud-

330

B KIBEPBEI3NEKA: ocsira, HayKa, TexHiKa Ne 3 (27), 2025

CYBERSECURITY: ISSN 2663 - 4023
EDUCATION, SCIENCE, TECHNIQUE

based deployment models it becomes increasingly important to tackle the issues related to
observability precisely and in a timely manner.

The aim of the article. Develop a practical architectural model that allows to deploy an
implementation of an adaptive logging method [7] into the cloud infrastructure of one of the
prominent cloud providers.

RESULTS AND DISCUSSION

An adaptive logging method is a one possible approach that can aid in handling common
observability issues in software systems on different platforms, programming languages and
for various software products. Its latest form has several mechanisms that make debugging
easier [8]: filtering out log message calls, overriding configuration of what to include and what
to skip, working with a special dynamic message variant that allows to define “on-the-fly”
computation that can be used when generating log entry (and an additional mechanism to make
sure that those computations are valid and don’t introduce unexpected effects as logging is more
of a helper functionality that should not significantly affect software system). This work is
mainly focused on integrating theoretical aspects described previously in a real-world cloud-
based deployment scenario leveraging infrastructure provided by Amazon Web Services
(AWS) [9]. As such, the main research method used in this paper is modelling.

The main service used for the model is Elastic Cloud Compute (EC2) which is basically
a form of computational resources physically distributed around the globe that can be “rented”
for some time and then returned back to the provider. There are many different classes of EC2
instances for different purposes, such as “C5n”-instances optimized for computationally
intensive workloads because of the high-speed communications between nodes (provided by
the Nitro System and Elastic Fabric Adapter) and they can deal with different tasks, like
benchmarking the performance of large-scale computational fluid dynamics applications
conducted in [10]. Because the main use case for adaptive logging mechanism is to help
developers write better software, it is not urgently required to have high computation power or
fast connectivity, so a simpler instance can be used with a more typical task of creating a web
server that handles plain HTTP requests.

All resources created in AWS cloud are placed in a Virtual Private Cloud (VPC), a special
type of resource that wraps some other resources and then can be connected to the public
internet. Fig. 1 describes all the expected parts:

AWS Cloud
Adaptive logging
method implementation
(TR

Fig. 1. Webserver (with implemented adaptive
logging method) on EC2 placed in AWS cloud

331

BKIBEPBEI3INEKA: ocsite, Hayka, textika Ne 3 (27), 2025

CYBERSECURITY: ISSN 2663 - 4023

EDUCATION, SCIENCE, -TECHMQUE

Webserver is expected to run using computational resources provided by EC2, which in
turn is placed in a VPC inside AWS cloud with connectivity to public internet and different
clients. Three expected HTTP routes are “/auth” — which deals with authenticating users,
“/me” — which returns information about currently logged in user and “/users” — route for
users with administrative permissions that lists all users of the system. This example might
seem trivial functionality wise, but this is just enough to showcase expected flow of adaptive
configuration. Also webserver has a module that implements adaptive logging method, which
in turn is used in all three routes and allows to observe internal processes.

There are two main formal functions that need to be implemented:

flog adp = f(Sev, Mpy, Tinc) (1)

which is a formal signature description of a method in an adaptive logging method
implementation that is responsible for creating log messages. Parameter Sev specifies a level
of “severity” chosen from an ordered set of possible values that describe how important a given
invocation is, parameter M, is a related log message in either textual or script-like notation
(that can be evaluated “on the fly”’) and parameter T;,.; represents a set of tags — small textual
identifiers, human-readable or not — that is used when deciding which invocations should be
skipped or included in final output.

finit = f(Sev,C) 2)

which represents a method for (re-)initialization of the code abstraction that is responsible
for implementing adaptive logging singleton and includes parameter Sev, which is the lowest
severity level that is considered to be interesting for current debugging session and only
messages with levels this or higher should be outputted, as well as configuration object C. Its
internal structure consists of three main parts:

Tod n Tod n || Tiod n T4 n L] ...

Mgy, = Map < string, string > (3)
Mdyn schm = Map < string, OJSON—schema >

First part is a set of tags combined on the top level with "||" operator that has properties
similar to Boolean “OR” operator, and in each individual “or”-segment tags are connected using
“N” operator, which is basically a version of logical “AND”. This provides an adaptive logging
method implementation with the necessary set of checks to determine whether a given log
invocation should be skipped or executed and functions based on the idea that only those
invocations, that have at least one matching “or”-segment, where each “and”-segment matches
the tag for that log call, should generate output — all the others can be skipped saving resources
and time. Second is a dictionary-like structure that maps dynamic script-like log message
definitions with corresponding identifiers used in code, so that those definitions can easily be
changed without altering source code itself. Finally, for validation purposes a dictionary of
schemas in JavaScript object notation [11] mapped to corresponding identifiers, adding the
ability to run at least some verification that dynamic messages are more or less reliably doing
what they are supposed to do and don’t have unwanted side effects.

Taking into consideration the fact that current work is focused on creating an architecture
in one of the most popular cloud provider infrastructures, it is worth mentioning that equation
(1) can be omitted at this level of discussion, as it works solely in code implementation.
However, (2) and (3) most certainly should be discussed here as to properly implement those
some specific AWS capabilities are required.

C =

332

BKIDEPBEI3SINTEKA: ocaira, Hayka, Textika Ne 3 (27), 2025

CYBERSECURITY: ISSN 2663 - 4023
EDUCATION, SCIENCE, TECHNIQUE

In its entirety equation (3) was designed to be serializable to improve portability and
lower the requirements to both hardware and software that a given implementation would
require. As a result, there is no need to rely on runtime mechanisms of a certain platform or
programming language — any adaptive logging singleton implementation should work fairly
well just being able to read some textual file and interpret (or parse) it to derive configuration
object (3). And so this is the first architectural decision that can be trivially implemented in the
Elastic Cloud Compute service of AWS (because each virtual machine instance has at least
some way of interacting with textual files) — a file-based configuration placed somewhere on
the machine with a web server in our example.

Next step in making the change propagation mechanism adaptive is to use operation
system process signals to start reinitialization procedure [12]. With this approach set up it is
possible to adapt to changes in logging requirements “on the fly”, altering the output, but
persisting the state. As with file-based configuration, this mechanism is really general and is
expected to be present on a large percentage of modern operating systems (for example compute
instances in AWS cloud are created using Amazon Machine Images, that basically contain an
operating system to run inside said virtual instance, and AMI family that AWS provides —
“Amazon Linux AMI”-s — are, as name suggests, based on Linux OS, so process signals should
work on those out of the box).

The final piece of the puzzle is related to the process of establishing safe and reliable
connection to the virtual instance in the cloud. Once again, adaptive logging method omits this
from its own formal definitions as it is expected to be handled elsewhere and the reason for this
is that such concern is solved a lot easier on a different level than the one where main
formalization of the method happens in. One possible approach is to use Secure Sell (SSH)
[13], which is a software-based approach to network security that encrypts data when it is sent
by computer to the network and then decrypts it on the receiving end. AWS does provide the
ability to add this form of communication to a virtual machine by providing a pair of SSH-keys,
but proper management and rotation of those keys is a complex task and, if lost or stolen, can
be a dangerous vulnerability point of the system (additionally, SSH generally works on a well-
known port which can also provide a way for an attacker to break in or disrupt user sessions on
an instance). As an alternative, Amazon cloud provides another special service called Session
Manager [14], that can be used to establish secure connection to an EC2 instance without
opening any ports and relying on any file-based keys. It works by installing a special client
software on the machine that needs to be controlled “from outside” and only opening outbound
connections required for this client to communicate with the server part of the Session Manager.
Then the connection and action permissions are managed by special abstractions in AWS cloud,
like users, roles and policies, and using a browser based interface it becomes possible to connect
to a virtual machine. It has a huge range of capabilities, such as session tracking using general
log generating and processing mechanisms, access control based on aforementioned roles or
users, session expiration mechanism and finally is highly portable because of its web based
implementation. Such rich variety of features (most of which are crucial for confident
management of remote machines) would overcomplicate the basics of an adaptive logging
method, which is why those were designed to be handled by some external mechanisms.
Additionally, the exclusion of such mechanism from the method itself means that there are
basically no restrictions on how tight the security of inbound connections should be and each
implementation can decide on the appropriate level it requires.

333

B KIBEPBEI3NEKA: ocsira, HayKa, TexHiKa Ne 3 (27), 2025

CYBERSECURITY: ISSN 2663 - 4023
EDUCATION, SCIENCE, TECHNIQUE

This setup is demonstrated in Fig. 2:

EUE AWS Cloud

<0

webserver
process

Adaptive
logging A
singleton | config

Fig. 2. EC2 architecture with file-based adaptive logging configuration
and Session manager client with secure connection to an administrative machine

Together with the EC2 setup shown in Figure 1 this approach allows to finally describe
how adaptive logging can be used in a typical web-server scenario. Generally, web-servers
operate using HTTP routes, in our case ‘/auth”, “/me” and ‘“/users”, which provide
corresponding business logic functionality, add layers of protection (if necessary) such as
authentication, client address blacklisting, etc., may add constructs that allow to improve
performance and finally allow to introduce higher levels of observability for a given endpoint.
A typical approach used in software development is to have log reporting be based on different
severity levels and fine-tune it in development or testing stages, but leave only the most severe
and dangerous cases to be reported in the production environment. While this does make sense,
the approach is not ideal: for example, if all three of web-server in an example routes are
exhaustively covered with debugging statements, which are properly marked with
corresponding severity, then when lower severity level reporting is enabled, using levels like
“info” or “debug”, it automatically starts generating information from everywhere, even if the
current task at hand does have such requirement. In Fig. 1 if an issue arises in “/users” endpoint
and “debug” severity level reporting is activated, it could potentially trigger logging from
“/auth” route on each request (if it serves both as a first time login endpoint and as an
authentication revalidation method, for example), which consequently leads to more noise and
unwanted details that need to be filtered either automatically using some special tools or
manually. This is where log tagging provides a much better precision when inspecting a
particular part of the software system. However, while it is very well possible to simply restart
the web-server with the new configuration, there are occasions where it is not desirable, such
as when an issue might be caused by some ephemeral state inside the operating system process
itself (memory, temporary files, etc). Using the setup from Fig. 2 it becomes possible to securely
connect from an administrator controlled machine into an active cloud-based compute instance
and trigger reinitialization procedure inside an adaptive logging method implementation (by
utilizing process signals in an operating system to initiate reload of currently active
configuration object and to pull the updated one from text-based configuration file nearby),
persisting most (if not all) of the stateful parts of the runtime.

334

K IDEPBE3NTEKA: ocaira, Hayka, TexHika Ne 3 (27), 2025

CYBERSECURITY: ISSN 2663 - 4023
EDUCATION, SCIENCE, TECHNIQUE

The resulting mechanism has some resemblance with existing tooling for client-side
development in modern web industry: tools that are called “bundlers”, which are used to
combine and process source code before shipping it to end users sometimes offer the ability to
replace parts of the code base “on the fly” without the need to reload the page and erasing the
danger to lose temporary state of components or modules. This feature is called “hot module
replacement” and is a common technique in renown development tools such as webpack and
vite [15]. In a way, the reinitialization part of the adaptive logging approach can be thought of
as “hot module replacement”, but for observability related concerns, where “modules” are not
exactly software components that comprise main functionality, but rather helper segments that
make debugging easier.

CONCLUSIONS AND PROSPECTS FOR FURTHER RESEARCH

This paper presented an architectural model of real life application of adaptive logging
method using infrastructure services provided by one of the world’s largest cloud providers —
Amazon Web Services. Using Elastic Cloud Compute service to host a webserver, combined
with the ability to establish a secure connection to a virtual machine using session manager
service, allowed to bring theoretical aspects of adaptive logging method into the real world.
This setup is demonstrated to not only be able to adapt to changing reporting requirements
during the development phase, but also to achieve this without the need to restart processes,
and as a result — without losing internal process state. Serializable nature of the configuration
parameters and reliance on a widely available mechanism of operating system’s process signals
made it simple enough to find appropriate components needed to design a proper
implementation. While the example is mainly focused on a web-server use case (because of its
simplicity and clear separation of different parts of the system dictated by HTTP routes), this
method can as well be used in other applications that run on AWS provided infrastructure (and
possibly in other cloud provider environments as well, but with slightly adjusted architectures).
Possible prospects for further research include comparing the differences between simple web-
server based adaptive logging setups in different major cloud providers (such as Microsoft
Azure or Google Cloud), as well as looking into more advanced use cases such as
implementations for prebuilt software products like native programs and mobile applications,
or it might be worth looking into how software products written in different programming
languages can introduce adaptive logging method into their code base.

REFERENCES (TRANSLATED AND TRANSLITERATED)

1. Feldmann, A., Gasser, O., Lichtblau, F., Pujol, E., Poese, I., Dietzel, C., Wagner, D., Wichtlhuber, M.,
Tapiador, J., Vallina-Rodriguez, N., Hohlfeld, O., & Smaragdakis, G. (2021). A year in lockdown: how the
waves of COVID-19 impact internet traffic. Communications of the ACM, 64(7), 101-108.
https://doi.org/10.1145/3465212123

2. Fuchs, K. (2023). Exploring the opportunities and challenges of NLP models in higher education: is Chat
GPT a blessing or a curse? Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1166682

3. Sengar, S., Hasan, A., Kumar, S. & Caroll, F. (2024). Generative artificial intelligence: a systematic review
and applications. Multimedia Tools And Applications. https://doi.org/10.1007/s11042-024-20016-1

4, Guembe, B., Azeta, A., Misra, S., Osamor, V. C., Fernandez-Sanz, L., & Pospelova, V. (2022). The
Emerging Threat of Ai-driven Cyber Attacks: A Review. Applied Artificial Intelligence, 36(1).
https://doi.org/10.1080/08839514.2022.2037254

5. Aydin, H. (2021). A Study of Cloud Computing Adoption in Universities as a Guideline to Cloud
Migration. Sage Open, 11(3). https://doi.org/10.1177/21582440211030280

335

10.

11.

12.

13.

14.

15.

KIBEPDB E3 [TEKA: OCBITa, HayKa, TexHiKa Ne 3 (27), 2025

CYBERSECURITY. v

Gopireddy, S. (2023). Compliance automation in azure: ensuring regulatory compliance through DevOps.
International Journal of Core Engineering & Management, 7(7).

Suprunenko, 1., 7 Rudnytskyi, V. (2024). On specifics of adaptive logging method implementation. Bulletin
of Cherkasy State Technological University, 29(1), 36-42. https://doi.org/10.62660/bcstu/1.2024.36
Suprunenko, 1., & Rudnytskyi, V. (2024). Validation of dynamic message variant in adaptive logging
method. International scientific-technical journal “Measuring and computing devices in technological
processes”, 4. https://doi.org/10.31891/2219-9365-2024-80-5

Kewate, N., Raut, A., Dubekar, M., Raut, Y., & Patil, A. (2022). A Review on AWS - Cloud Computing
Technology. International Journal for Research in Applied Science & Engineering Technology (IJRASET),
10(1). https://doi.org/10.22214/ijraset.2022.39802

Dancheva, T., Alonso, U., & Barton, M. (2024). Cloud benchmarking and performance analysis of an HPC
application in Amazon EC2. Cluster Computing, 27, 2273-2290. https://doi.org/10.1007/s10586-023-
04060-4

Wright, A., Andrews, H., Hutton, B., & Dennis, G. (2022). JSON Schema: A Media Type for Describing
JSON Documents. https://json-schema.org/draft/2020-12/json-schema-core.

Suprunenko, 1., & Rudnytskyi, V. (2024). Comparison of message passing systems in context of adaptive
logging method. Visnyk of Kherson National Technical University, 2(89), 228-234.
https://doi.org/10.35546/kntu2078-4481.2024.2.32

Barrett, D. J., Silverman, R. E., & Byrnes, R. G. (2005). SSH, the Secure Shell: The Definitive Guide.
O'Reilly Media, Inc.

Wittig, A., & Wittig, M. (2023). Amazon Web Services in action: an in-depth guide to AWS (Third edition.).
Manning Publications.

Nguyen, T. A. (2024). A comparative analysis of Webpack and Vite as build tools for JavaScript. Haaga-
Helia University of Applied Sciences. Business Information Technology. Bachelor’s Thesis.

336

: K| B E pB E3 |—] E KA OCBITa, Hayka, TexHikKa Ne 3 (27), 2025

CYBERSECURITY. v

Cynpynenko Lias OsiekcaHapoBuy

acmipanT kadeapu iHGopmariitHoi Oe3rmekn Ta KOMIT I0TepHOT IHKeHepii
UYepkacbKuii Aep >kaBHUH TEXHOJIOTIYHAHN yHiBepcuTeT, Yepkacu, Ykpaina
ORCID ID: 0000-0002-1188-4804

i.0.suprunenko.asp22@chdtu.edu.ua

Pynunubkuii Bosonumup MukonaiioBuy

I.T.H., ipodecop kadeapu iHGopMaIliifHOT OE3MEKU Ta KOMIT I0TEPHOT 1HXEHepii
Yepkacbkuii IepKaBHUI TEXHOJIOTIYHUHN yHIBepcuTeT, Uepkacy, Ykpaina
TOJIOBHUI HAyKOBHH CITIBPOOITHHK

JleprxaBHMI HAYKOBO-JIOCHIHNIN IHCTUTYT BULIPOOYBaHb 1 cepTudikanii
030poeHHS Ta BIHCHKOBOI TexHikH, Uepkacy, Ykpaina

ORCID ID: 0000-0003-3473-7433

rvn_2008@ukr.net

XMAPHO-OPIEHTOBAHA APXITEKTYPA
IMINIEMEHTAIII METOAY AJATUBHOI'O JIOI'YBAHHS

Anotanis. [IporpamMHi TeXHOJOTII € pPYIIIHHOIO CHIIOK BIXYYTHOI KITBKOCTI TMOBCIKICHHUX
MpOLECiB, 3MIHIOIOUN 3BUYHHUH CIIOCIO BUKOHAHHS 331a4 Ta HaBiTh MOXYTb CYTTEBO JOIOMOITH B
KpH30Bi YacH. Bixg mpuBaTHMX BIpTyaJbHHX MEPEXK, IO JONOMOIIIH BIIOPATHCH 13 BHKIMUKAMHU
MoJienelt BigmaneHoi poOoTH, siki Oyim HeoOXifHi B mepio nepmux macosux nposisie COVID-19,
JI0 MOJIEJIeH IITYYHOTO IHTENEKTY, 10 TPAaHC(OPMYIOTh POLIECH HABYaHHS Ta MOLIyKy iHdopMallii,
Ta MOZeNeil XMapHHUX 00YKCIIeHb 3 TX BIUIMBOM Ha HANMCAHHS NPOrPaMHOTO 3a0e3MeueHHs] — 3MiHH
noBctonu. OMHAK pa3oM 3 HUMH 3 SIBIISIIOTBCS HOBI JWJIEMHU, BKJIIOYHO 3 TUMH, LIO CTOCYIOTHCS
0e3neKy NporpaMHOro 3a0e3MeYeHHs Ta HOT0 KOPUCTYBAYiB, 1110 B CBOIO YEPry BUMArae HajJexHOTro
3aXHCTY Ta KOHTPOJIIO HaJl KOMIT IOTepHUMH nporpamamu. Dokyc yBaru miei cTaTTi cipsiMOBaHUMA
Ha aCIeKT CIIOCTEPEXXHOCT] SK CKIIaJOBOI YacTHHHU KibepOe3mekn, B MeXax SKOTo IIPeACTaBlIcHA
MOJIETIb peati3amii TEOPeTHYHHUX ACHEKTIB METOMY aJalTHBHOTO JIOTYBaHHS IPH PO3MIIIEHHI Ha
peampHOMY TIpHUKIai BeO-cepBepa. OCHOBOI U AaHOI MOJENi € iHQPAacTPyKTypa OIJHOTO i3
HaMOUTPIINX MPOBaiIepiB 0OYNCIIOBATEHUX TTOTYKHOCTEH B XMapi, Ha peaJbHUX CepBicax sIKOTO
MPOJIEMOHCTPOBaHA pealizallisi IBOX BaKIMBUX (OPMaIbHHX KOMIIOHEHTIB Merony. B xonxi
MOJICTIOBaHHs OyJla TepeBipeHa MOXKIMBICTD 3aCTOCYBAaHHsS aJalTHBHOTO MiIXOAy, a TaKOX
MPOJIEMOHCTPOBAHO, 1110 B 3arajbHOMY 3HaYHA YaCTHHA OOYMCITIOBATIBHUX TIATPOPM Ma€e HEOOXITHI
KOMIIOHEHTH, 10 POOUTH MOXKJIMBUM pealizallifo B pI3HUX 3acTocyHKax. JlomaTkoBo
MPOJIEMOHCTPOBAHO, IO BHKIIOUEHHS CIELialli30BAHOIO MeXaHi3My Oesrneku 13 (opMaJIbHUX
BU3HAYECHb METOAY aJalTHBHOIO JIOTYBAHHS € JKHTTE3IATHUM MiJXO/0M, OCKUIBKH HEOOXiTHHN
piBeHb Oe3nexu Moxke OyTH 3a0e3MeUeH il cepBicaMy ITpoBaiiiepa XMapHUX MOTYKHOCTEH, 3aBISIKH
YOMY JI0JIaBaHHSI [[bOT0 KOMIIOHEHTY POXO/ANTh HE BIUIMBAIOUHU O€310cepeIHbO Ha IMILIEMEHTAILIIF0
METOL.

Karouosi ciioBa: kibepOeseka; CioCTepekHICTh; JIOTYBaHHS; 1e0ariHr; XMapHa iHPpacTPpyKTypa;
apXITEKTYpHa MOJIEIb.

CIITUCOK BUKOPUCTAHMUX JKEPEJI

1. Feldmann, A., Gasser, O., Lichtblau, F., Pujol, E., Poese, I., Dietzel, C., Wagner, D., Wichtlhuber, M.,
Tapiador, J., Vallina-Rodriguez, N., Hohlfeld, O., & Smaragdakis, G. (2021). A year in lockdown: how the
waves of COVID-19 impact internet traffic. Communications of the ACM, 64(7), 101-108.
https://doi.org/10.1145/3465212123

2. Fuchs, K. (2023). Exploring the opportunities and challenges of NLP models in higher education: is Chat
GPT a blessing or a curse? Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1166682

3. Sengar, S., Hasan, A., Kumar, S. & Caroll, F. (2024). Generative artificial intelligence: a systematic review
and applications. Multimedia Tools And Applications. https://doi.org/10.1007/s11042-024-20016-1

337

10.

11.

12.

13.

14.

15.

KIBEPDB E3 [TEKA: OCBITa, HayKa, TexHiKa Ne 3 (27), 2025

CYBERSECURITY. v

Guembe, B., Azeta, A., Misra, S., Osamor, V. C., Fernandez-Sanz, L., & Pospelova, V. (2022). The
Emerging Threat of Ai-driven Cyber Attacks: A Review. Applied Artificial Intelligence, 36(1).
https://doi.org/10.1080/08839514.2022.2037254

Aydin, H. (2021). A Study of Cloud Computing Adoption in Universities as a Guideline to Cloud
Migration. Sage Open, 11(3). https://doi.org/10.1177/21582440211030280

Gopireddy, S. (2023). Compliance automation in azure: ensuring regulatory compliance through DevOps.
International Journal of Core Engineering & Management, 7(7).

Suprunenko, I., 7 Rudnytskyi, V. (2024). On specifics of adaptive logging method implementation. Bulletin
of Cherkasy State Technological University, 29(1), 36—42. https://doi.org/10.62660/bcstu/1.2024.36
Suprunenko, I., & Rudnytskyi, V. (2024). Validation of dynamic message variant in adaptive logging
method. International scientific-technical journal “Measuring and computing devices in technological
processes”, 4. https://doi.org/10.31891/2219-9365-2024-80-5

Kewate, N., Raut, A., Dubekar, M., Raut, Y., & Patil, A. (2022). A Review on AWS - Cloud Computing
Technology. International Journal for Research in Applied Science & Engineering Technology (IJRASET),
10(1). https://doi.org/10.22214/ijraset.2022.39802

Dancheva, T., Alonso, U., & Barton, M. (2024). Cloud benchmarking and performance analysis of an HPC
application in Amazon EC2. Cluster Computing, 27, 2273-2290. https://doi.org/10.1007/s10586-023-
04060-4

Wright, A., Andrews, H., Hutton, B., & Dennis, G. (2022). JSON Schema: A Media Type for Describing
JSON Documents. https://json-schema.org/draft/2020-12/json-schema-core.

Suprunenko, I., & Rudnytskyi, V. (2024). Comparison of message passing systems in context of adaptive
logging method. Visnyk of Kherson National Technical University, 2(89), 228-234.
https://doi.org/10.35546/kntu2078-4481.2024.2.32

Barrett, D. J., Silverman, R. E., & Byrnes, R. G. (2005). SSH, the Secure Shell: The Definitive Guide.
O'Reilly Media, Inc.

Wittig, A., & Wittig, M. (2023). Amazon Web Services in action: an in-depth guide to AWS (Third edition.).
Manning Publications.

Nguyen, T. A. (2024). A comparative analysis of Webpack and Vite as build tools for JavaScript. Haaga-
Helia University of Applied Sciences. Business Information Technology. Bachelor’s Thesis.

This work is licensed under Creative Commons Attribution-noncommercial-sharealike 4.0 International License.

338

http://creativecommons.org/licenses/by-nc-sa/4.0/

