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THEORETICAL AND TECHNICAL ASPECTS
OF MACHINE LEARNING USAGE IN CYBERSECURITY

Abstract. The article explores the technical and theoretical aspects of machine learning (ML) in
addressing the escalating complexities of cybersecurity threats in the digital age since the ever-growing
rise in cybercrime has prompted users to utilize newer approaches to raise the bar on cybersecurity.
Research considers the adoption of machine learning (ML) technology as a cornerstone of virtually any
contemporary problem in cyber security, particularly processes and techniques involved in problem
analysis, detection, attack prediction, and even behavioral profiling. Elaborated on how ML makes a
better response compared to traditional methods like signature-based detection by explaining how real-
time analysis of massive data becomes possible. An overview of the important features of supervised and
unsupervised learning is provided in the context of anomaly detection and malicious activity recognition
with a focus on Support Vector Machine and Isolation Forests algorithms as well as a detailed look at the
LSTM model for phishing URL evolution analysis. Also, those algorithms have been highlighted from
the technical implementation side: supervised learning with Support VVector Machines using Scikit-Learn
to classify network traffic trained on features like IP addresses and ports, unsupervised learning with
Isolation Forests for anomaly detection in multidimensional data, and deep learning with Long Short-
Term Memory (LSTM) networks for phishing URL analysis. This paper investigates significantly
important difficulties in carrying out ML algorithms, such as class imbalance, adversarial attacks, and
lack of model transparency. Such techniques as SMOTE (Synthetic Minority Over-sampling Technique)
are proposed for developing training datasets, whereas model adversarial training and robust optimization
methods are suggested for defense against malicious model exploitation. Also, the role of explainability
methods such as SHAP and LIME are emphasized to build the trust and acceptance of automated ML
systems in cybersecurity. Identified research opportunities and suggested that further testing be done on
improving model robustness and performance metrics in constrained environments.

Keywords: cybersecurity; cyberattack; cyberdefense; machine learning; deep learning; machine
learning in cybersecurity.

INTRODUCTION

A massive flow of information has emerged, introducing new complexities along with
advancing the amount of cyber attacks. It’s not just a virus or a phishing email; there are far
greater and more intricate, cunning assaults on pivotal infrastructure units such as electric grids,
banks, plants, or moreover state institutions. The digital revolution has indeed opened plenty of
opportunities and it certainly does put us at more risk. Cybercriminals inventing more and more
threats every single day, and countries have begun to use cyberattacks as weapons in cyber wars
[1]. Outdated security measures, which include signature tracking and manual rule setting, have
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long gone outmatched by the speed and magnitude of the growth of the cyber world. This makes
new measures such as machine learning (ML) more practical. This proposes new techniques
for efficient data examination, classification, and real-time anomaly detection.

Machine learning is a very important component of artificial intelligence that works on the
design and development of self-learning algorithms. Through experience, self-learning algorithms
enhance their results, usually without further programmed input intervention by enabling automated
improvement of output records [2]. In the world of digital dangers, where hackers are consistently
developing new and improving old models, the adaptive capability of machine learning to new
unknown threats is remarkable. Machine learning systems can automatically identify traffic behavior
patterns, detect anomalous activity atypical to ordinary users, and classify malware based on its
features. Statistical methods and techniques using machine learning, which are discussed in the book
by Gareth James and other coauthors, make it possible. Here they explain that regression methods,
also logistic regression, trees of decision, regression, and clustering (k-means), can be called for more
compound multidimensional data sets [3]. These methods are applied in cybersecurity for the sake of
developing models that identify atypical anomalies in system logs, apportion probabilistic values of
attacks, and classify user actions for proactive detection of internal system threats.

As Friedman and Singer note, “Attacks are no longer limited to simple viruses; they
include social engineering, zero-day exploits, and coordinated campaigns that adapt to the
victim’s defenses” [1]. In this case, cyber threats are multifaceted and accompanied by different
kinds of risk factors. It follows that cybersecurity systems are expected not only to mitigate
established threats, but also to anticipate new ones leveraging big datasets from software
signatures, network logs, and even user activities. Such circumstances make machine learning
particularly useful as its algorithms can generalize even with noisy data from real-life situations
[2]. For instance, such classifiers like Support Vector Machines and Random Forest can detect
malware by analyzing its binary code or calls to its external interfaces [3]. In this manner,
machine learning approaches assist in responding to well-known attacks and at the same time
detecting new, unfamiliar, undocumented threats.

Even though machine learning offers numerous advantages, its incorporation in
cybersecurity still poses several issues to consider. The model’s performance relies on various
factors like the quality of input data, the appropriate configuration selection, and most
importantly, the necessary computational resources to enable deep and efficient learning [3].
Developers have to deal with noisy information, unnecessary positive results, and data streams
that cannot be handled as needed. Furthermore, machine learning models are prone to what is
known as adversarial learning attack vulnerabilities. In this scenario, algorithms are tricked by
attackers who create an additional layer of complexity by deliberately manipulating data, which
is quite difficult for cybersecurity system developers to overcome [2]. All in all, machine
learning in cybersecurity offers options for sophisticated data and hidden cyber threat analysis,
but with these advances comes the responsibility to countermeasure techniques, so that they
can cope with the gradual progression of cybercrime [1].

BASICS OF MACHINE LEARNING

Three fundamental methods of machine learning are mainly separated into three branches:
supervised, unsupervised, and reinforcement learning. As of now, modern cybersecurity
approaches make use of the first two types of learning systems.

In supervised learning, a labeled dataset is used. In other words, it contains marked instances
where each input (features of the object) has an associated label (output). An essential part of this
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kind of learning is to train the model to label new data. Classifying (spam versus not spam) and
regression (predicting numerical values) tasks are examples of how they can be utilized. The
definition of “learning with a teacher” has to do with how the data is structured, in which case it is
given as (L], J([])) the objective being to evaluate the function [ [2]. It means that linear
regression or logistic regression is exposed to labeled data in order to lessen the Mean Square Error
(MSE) of the so-called prediction error by taking into account the generalization to new data [3]. In
this perspective, the model evaluation through cross-validation is crucial. Concerning deep learning,
it is common that during the training procedure of the deep neural networks, they are to some degree
supervised: “The backpropagation algorithm is used to optimize the parameters. The gradient
descent method is fundamental for training deep models” [4]. The primary application of supervised
learning is the classification of malware based on labeled data.

In contrast to supervised learning, unsupervised learning works with unlabeled data,
aiming to find hidden structures, patterns, or groups. It is applied in anomaly detection within
network traffic, where normal behavior is not explicitly labeled. Clustering (grouping similar
objects) and dimensionality reduction (simplifying data while preserving important
information) are considered the most common tasks using unsupervised learning. Tom Mitchell
describes such tasks as "finding structure in data without explicit labels" [2]. As for example,
he cites clustering and learning associative rules.

Deep learning has been mostly considered as a branch of machine learning where multi-
layered neural networks model data with complex relationships. It is especially effective with
images, texts, audio, and other categories of unstructured data. The impressive results achieved
in recognition activities stem from deep neural networks using automatic detection of a feature's
hierarchy within the data [4]. They give a detailed account of the architectures of Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN), primarily focused on user
behavior analysis with recurrent networks or malware identification via convolutional neural
networks.

MACHINE LEARNING IN CYBERSECURITY

Cybersecurity has been defined as a key tool in the field of cybersecurity with the advent
of new cyber threats. Every new hyper-connected era enhances ML adoption. Over the last
decade, automated systems based on ML techniques have rapidly scaled, complimenting
traditional systems, improving overall threat detection, and speeding response times. One of the
main reasons is that algorithms like Random Forest or Neural Network techniques are capable
of analyzing huge datasets, deriving hidden patterns, and addressing newly emerged challenges.
The growing problem of phishing attacks is eliminated with the help of Natural Language
Processing (NLP) models like BERT that examine text in emails or URLSs looking for patterns
including misspelled fake domains [1]. ML enables the automation of these processes,
significantly reducing the response time to threats, which is critical in today's digital world.

An additional important use of machine learning is in User and Entity Behavior Analytics
(UEBA) programs. Such methodology is predicated on formulating a baseline of normative
behavior for users or devices and subsequently detecting deviations from the set norms. The use
of ML for behavior analysis shifts the burden of combating cyber threats from reactive to
proactive for organizations since these systems can detect problems before considerable damage
is inflicted [5]. Typical actions are clustered by K-means or DBSCAN algorithms, while outliers
such as abnormal logon hours or access to sensitive information, may suggest insider threat or
account takeover. Since recurrent neural networks (RNN) or Long Short Term Memory networks
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(LSTM) can store and recall previous operations, they are commonly used to interpret time-
ordered streams of actions and that is successfully applicable to the above issues.

For attacks such as DDoS (Distributed Denial of Service), machine learning utilizes time
series analysis to forecast future events using historical patterns. For instance, ARIMA
(AutoRegressive Integrated Moving Average) or LSTM models forecast the anticipated traffic
metrics like ‘requests per second’, that correlate with periods of DDoS attacks. Such advanced
notice enables proactive defense action, for example, re-routing traffic or bringing more servers
online. Predicting attacks with ML is crucial given the cybercriminal's constant evolution and
improvement of automated attack tools where conventional static defense mechanisms become
nearly obsolete [4].

Machine learning can demonstrate self-sufficient learning within the automation of a
threat response system. Models can be configured to strategically and automatically obstruct
malicious traffic impressions, quarantine afflicted machines, or even create chronic rule
modifications for firewalls in real time. For instance, reinforcement learning-based systems can
improve response strategies by determining the optimal balance between blocking and
minimizing false positive responses. Applying ML to cybersecurity systems improves
performance while enabling experts to concentrate more on strategic work and less on
operational tasks [6]. In the long run, the incorporation of ML into cybersecurity is more than
a modern-day technology; it is an evolution of how systems, data, and information will be
protected in the digital environment.

TECHNICAL ASPECTS OF USING ML IN CYBERSECURITY

In cyber security, machine learning is increasingly becoming an important asset to improve
capabilities like automating threat identification, data mining, and real-time adaptive attacks.
Integration of ML in this industry requires an array of algorithms, tools, and libraries organized in
a system capable of handling complex multidimensional data including the network traffic, system
logs, user activities, and even the malware’s binary codes. As it has been said, in the context of
machine learning we have three broad classifications of algorithms and methods: supervised
learning, unsupervised learning, and reinforcement learning. Each of these has distinguishing
technical features that make them appropriate for different uses and problems within cyber security.

Algorithms for supervised learning are employed in the classification and regression of
problems with labeled training data. One of the domains for the implementation of these
algorithms in cybersecurity is labeling network packets as either safe or malicious. Some
effective approaches for these tasks are logistic regression and decision trees, along with
support vector machines (SVM) which perform well on small well-annotated datasets [8]. Also,
these algorithms extend to the classification of malware, making use of features like API calls,
or behavioral patterns [9]. Let’s review a few essential stages of implementing SVM in Scikit-
Learn for traffic classification below:

— Data Preparation: this stage consists of preparing the dataset to make sure that it
is ready for training;

— Model Creation and Training: in this step, already prepared data is used to design
a “classifier model” and train it;

— Dataset Requirements: an SVM requires a dataset with a variety of traffic attributes
and their corresponding class labels for the model to be accurately trained.

The data can be described in a tabular form as below, with each row referring to a
network event, event attributes, and the last column value set as the class label:
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Source Destination Source Destination Protocol | Data | Time | Packets | Label
IP IP Port Port
192.168.1.1 | 205.42.5.1 8080 443 TCP 204 10s 24 N
192.155.2.2 | 11.12.345 156 3000 TCP 11 50s 32 M
192.168.2.1 | 201.28.2.1 50000 60555 UDP 256 1s 225 M
192.55.1.1 38.2.55.2 344 252 UDP 234 2s 62 N
N — Normal

M — Malicious

import pandas as pd

from sklearn.model selection import train test split

from sklearn.preprocessing import StandardScaler

from sklearn.svm import SVC

from sklearn.metrics import accuracy score

from sklearn.metrics import classification report, confusion matrix

network data = {

'source ip': [19216811, 19215522, 19216821, 1925511, 19265211, 17224566,
56362317,

'destination ip': [2054251, 1112345, 2012821, 382552, 23454542, 124111,
2112634647,

'source port': [8080, 156, 50000, 344, 8000, 3245, 600007,
'destination port': [443, 3000, 60555, 252, 4433, 3001, 50001],
'protocol type': [1, 1, O, O, 1, 1, 0], # 1 for TCP, O for UDP

'data': [2048, 11, 256, 234, 512, 235, 73],
'time': [10, 50, 1, 2, 6, 66, 8],

'packets': [24, 32, 225, 62, 78, 2, 71,
'label': ['n', 'n', 'm', 'm', 'n', 'm', 'm']

# Data Preparation

data frame = pd.DataFrame (network data)
features = data frame.drop('label', axis=l)
labels = data frame['label']

# Dataset Splitting (30%-70%)
F train, F test, L train, L test = train test split (features, labels,
test size=0.3, random state=12)

# Normalization (ensure that features are on a similar scale, optional)
scaler = StandardScaler()

F train = scaler.fit transform(F train)

F test = scaler.transform(F_test)

# SVM Model Creation and Training
model = SVC(kernel='linear')
model.fit (F_train, L train)

# Predictions: the model makes predictions on the test set
predictions = model.predict(F test)

# Model Evaluation

accuracy = accuracy score (L test, predictions)
print (f'Accuracy score: {accuracy * 100:.2f}%")
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To achieve a reasonable output, it’s required to train the model with a large scale of data
(labeled network traffic). Additionally, we can try to optimize the model by experimenting with
different parameters and types of kernels like ‘rbf’, ‘poly’, and ‘sigmoid”.

In situations where there is no labeled data available to discover unknown dangers or
detect anomalies — an unsupervised learning strategy is very useful. Certain common
algorithms are clustering methods like k-means and the Isolation Forest technique. Isolation
Forest modality within Scikit-Learn is technically powerful when it applies to anomaly
detection of multidimensional data, which is quite common with abnormal network traffic [7].
This algorithm employs the ensemble strategy and operates under the premise that the
anomalies are infrequent events that can be isolated from most of the data in the feature space
without much effort [10]. An Isolation Forest algorithm builds a collection of binary trees called
Isolation Trees, which segment the data space by random partitioning. The essence is as
follows: outliers are separated in a shorter time than normal observations because they are
usually located at a greater distance from the center of the data. This algorithm is advantageous
due to its great performance and speed, linear complexity [1(] - [1[101(1)), and independence
of any parameter that affects the data distribution which increases flexibility, and speed in
separating outliers, since they are closer to the tree root [10].

from sklearn.ensemble import IsolationForest
import pandas as pd
import matplotlib.pyplot as plt

sample data = {
'vall': [1, o, 8, 10, 7, 6, 2, 7, -88, 3, 5, 102, 8, 7, 1, 9, 3, 5, 77, 81,
'val2': [6, 8, 1, 55, 3, 3, 9, -81, 6, 8, 1, 2, 6, 9, 5, 3, 1, 9, 43, 5e6],
}

data = pd.DataFrame (sample data)

iso_forest = IsolationForest (contamination=0.1, random state=12)
iso_forest.fit (data)

predictions = iso forest.predict (data)
data['anomaly'] = predictions

anomalies = data[data['anomaly'] == -1]
print (anomalies)

plt.scatter(datal'vall'], datal['val2'], c=data['anomaly'], cmap='coolwarm')
plt.xlabel('Val 1")

plt.ylabel ('Val 2")

plt.title('Isolation Forest')

plt.show()
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Fig. 1. Visualization of the Isolation Forest algorithm output

An lIsolation Forest is employed in a lot of domains, like fraud detection on financial
systems where the system needs to verify whether a certain credit card purchase is greatly
outside the normal user activity scope; detection of anomalies like unusual surges in network
traffic that can be an intensive DDoS attack; anomalous behavior in server logs suggestive of
an intrusion; anomaly detection in serial data like spikes in industrial sensors readings indicative
of a malfunctioning device and defect detection in manufacturing automates where data from
the production system indicate nonconformities or violations of the process standards [11].

Deep Learning helps us examine complicated pieces of information like text (images,
phishing emails) or sequences (logs). Recurrent Neural Networks (RNN) and Convolutional Neural
Networks (CNN) are highly effective for sequential data, for instance, Deep Learning is useful for
encrypted traffic analysis, revealing encrypted information without decryption [9]. Evaluation of
phishing URLs using Long Short-Term Memory (LSTM) is a perfect example of the use of
recurrent neural networks in the domain of cybersecurity. Phishing URLs often contain patterns
that are different from those found in legit URLs, such as domains that seem suspicious, odd
characters, and unusually elongated paths. LSTM can toggle multiple parameters against
themselves to train toward recognizing these patterns of known phishing URLS.

LSTM network implementation stages for analyzing phishing URLS:

Data collection and preparation: to train the model we should have a labeled dataset
containing both phishing and legitimate URLS.

# Data

urls = [
"www.facebook.com", "www.google.com", "www.stripe.com",
"www.g00gle.com", "secure-login-paypal.com", "www.amazOn.net"

]
# Labelling: 0 - legit, 1 - phishing
labels = [0, 0, 0, 1, 1, 1]

168



KIBEPDH E3 [TEKA: OCBIiTa, Hayka, TexHika No 4 (28), 2025

CYBERSECURITY: ISSN 2663 - 4023
) EDUCATION, SCIENCE, TECHNIQUE

Data preprocessing: URLSs should be converted into numerical sequences to be passed to the LSTM
model. Tokenization involves splitting the URL into individual tokens where each character is going to
be treated as a separate token. The padding ensures that all URLS are of a similar length by adding zeros.

tokenizer = Tokenizer (char level=True)
tokenizer.fit on texts(urls)
sequences = tokenizer.texts to sequences (urls)

max len = max([len(seq) for seq in sequences])
padded sequences = pad_sequences (sequences, maxlen=max len, padding='post')

Data transformation and splitting: transforming data into numpy arrays, followed by dividing into
training and test sets is essential for machine learning methodology. Initially, tokenized and
normalized URL data is converted into numpy arrays which allows for working with numerical
data quite easily. The arrays are then divided into a training set (normally 70%-80% of the data for
model training) and a testing set (20%—-30% of the data to determine the generalization and model
accuracy) where the division is typically random but can be reproduced via fixed shuffling.

# Converting data to numpy arrays
X = np.array (padded sequences)
y = np.array(labels)

# Splitting into training and test data

train size = int(len(X) * 0.8)

X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)

Create LTSM model: constructing the LSTM model with Keras for URL classification involves some
important features: adding an embedding layer which helps transform each character of the URL into
a dense vector at a constant size, enabling text data in number format representation; next, the
application of an LSTM recurrent neural networks layer to processes the URLS on a character-by-
character basis in a sequential manner and as a whole is referring to the timing and order of the
characters (to be able to detect phishing URL patterns); last, but not least, add a Dense layer with a
sigmoid function to a final layer which predicts the probability the given URL is phishing in a binary
classification manner.

# Create the model
vocabulary size = len(tokenizer.word index) + 1

model = Sequential ()

model.add (Embedding (input dim=vocabulary size, output dim=16,
input length=max len))

model.add(Bidirectional (LSTM (64, return sequences=False)))
model.add (Dropout (0.5))

model.add (Dense (1, activation='sigmoid'))

# Compile
model.compile (optimizer="'adam', loss='binary crossentropy', metrics=['accuracy'])

# Get the structure of the model
model.summary ()
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Model training: with the training phase, our learning process has to be set up wherein a model is
compiled with the correct loss function, here being binary cross-entropy in case it is a binary
classification. An optimizer such as Adam is defined, and appropriate metrics like accuracy are
assigned. Then, the ‘fit’ method is executed, which requires defining training data, number of
epochs (iterations of training), batch size, and optional validation information for performance
tracking.

# Training

batch size = 32

epochs = 10

history = model.fit(X train, y train, batch size=batch size, epochs=epochs,
validation data=(X test, y test))

Model evaluation: this is done on a test set to see how effectively the model can operate on data
it was not aware of during the training process. In the Keras library, the evaluate function is
called and the test data (X_test) and test labels (y_test) are passed. The model returns the metrics
defined during the compilation stage, enabling the evaluation of the model's generalization
capabilities through the obtained accuracy and loss values.

# Evaluation
loss, accuracy = model.evaluate(X test, y test)
print (f"Test accuracy: {accuracy * 100:.2f}%")

Sample application of a trained LSTM model for analyzing phishing URLSs:

def test (url, model, tokenizer, max len):
seq = tokenizer.texts to sequences([url])
padded seq = pad sequences (seq, maxlen=max len, padding='post')
prediction = model.predict (padded seq) [0] [0]
if prediction > 0.5:
print (f"URL: {url} -- Phishing (probability: {prediction:.2f})")
else:
print (f"URL: {url} -- Legit (phishing probability: {prediction:.2f})")

# Testing on a new URL
new url = "http://www.google.com/login"
test (new_url, model, tokenizer, max len)

Implementation of LSTM networks is an effective approach to analyzing phishing URLS.
It stems from the ability of LSTMs to process sequences of characters and identify long-term
dependencies and patterns of the data, which allows for precise classification of URLSs into
legitimate or phishing URLs. The model displays high accuracy, sometimes as high as 99% (in
certain studies), notably with large datasets like PhishTank, a crowdsourced free repository for
collecting, validating, and sharing information about phishing websites. It also outperforms
conventional machine learning techniques like Random Forests by featuring self-extraction,
which is done without the need for manual engineering. However, such systems do not come
without challenges since they require massive amounts of training data to meet the targeted
outcome. The high degree of computational complexity, their notorious black box nature, and
the frequent need to refresh the underlying model to capture emerging phishing trends also
make it difficult to interpret their results [13].
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CHALLENGES AND LIMITATIONS

Along with the integration of machine learning into cybersecurity comes several
effectiveness challenges, one of which is data quality. In practice, data is often skewed, with
normal network operations significantly outnumbering attack instances, which may be as low
as 0.1%. If the ML models are trained on this data, they may suffer from overfitting because of
the excessive normal data and as a result, we might get a poor detection of anomalies. Although
there are solutions to this problem such as oversampling methods (e.g. SMOTE) or anomaly
detection approaches. Synthetic Minority Oversampling Technique (SMOTE) is an
oversampling technique used to fight against an imbalanced dataset by oversampling and
creating new examples of the minority class through linear interpolation in the examples and
corresponding [ nearest neighbors (which is usually set to [ = 5). This technique enhances
the model's generalization capabilities and helps to avoid simple replication. However, it can
produce unreasonable data in scenarios with high-class overlap, and therefore, must be handled
with caution in high-dimensional datasets [12]. In less complicated terms, SMOTE is a
technique used to add more instances of data that relate to a rare class, like phishing URLs for
example, which are highly outnumbered by normal class phishing URLs. Instead of just
repopulating existing samples, it comes up with a new synthetic sample created through the
mingling of samples. For example, if two phishing URLSs are too similar, SMOTE creates an
“average” of them so it can be used as an additional training sample for the model. This helps
the model detect outliers more frequently, but those fictitious examples can be a bit unrealistic
at times.

Adversarial attacks comprise yet another perilous challenge. This is where malicious
users actively attempt to mislead an ML model by injecting noise into the data. These
‘adversarial examples’ have been shown to completely alter the decisions of the model with
little to no changes of input data, creating problems especially for intrusion detection systems
(IDS). There are protective measures such as Adversarial Training and Robust Optimization.
Adversarial Training stands as one of the most favored approaches used to improve the
resilience of ML models from attacks. The core concept is to enhance the training set’s pre-
processing by integrating adversarial examples, which are data points that closely resemble the
original samples, but are deceptively altered in a manner that is bound to confuse the model,
thereby resulting in misclassifications. The model learns to classify both normal and altered
data correctly, and therefore, it can tolerate such manipulations later on. Another approach,
Robust Optimization, defines models with resistance to a great deal of possible perturbations
within the data. Rather than reacting to specific attacks as in adversarial training, this method
aims to ensure that a model’s decisions remain accurate within the worst-case perturbation
scenarios that exist within a given radius, such as L2 or Loo norms variance [6]. Still, developing
robust models is quite a challenging task because of the constantly changing nature of hacking
techniques.

Computational resources impose further constraints as one of the leading limitations. The
deep learning approaches often implemented in the realm of cyber security to automatically
scan large datasets tend to be highly complex and resource-dependent on energy, GPU, TPU
(Tensor Processing Unit), and time for training. This is often a limitation for low-budget
organizations to use modern ML systems. These problems are compounded in the sphere of
cybersecurity with the question of model interpretability. Most machine learning algorithms,
and especially neural networks, are operated as “black boxes”, which do not provide
explanations about the reasons that underlie their actions. For the human analyst understanding
why some traffic has been classified as potentially harmful is crucial. Some tools such as SHAP
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or LIME give us the opportunity to understand explanations generated by machine learning
models, for example, to get an explanation of LSTM model decisions during phishing URL
detection. SHAP functions like a detective that accurately divides “blame” of a decision among
all parts of a URL (like words or patterns), showing each component's impact on the resulting
decision. LIME is a quicker “detective” who only works with specific URLs simply by covering
more complex ones with models. This comes with a cost in accuracy and a broader scope. If
rapid explanations of particular URLSs are the goal, use LIME. In contrast, SHAP is preferred
when time is not an issue and greater analysis is required [6]. Both of these different modern
methods of interpreting information searched for and present explanations and practical
usability, which may still not exist.

CONCLUSION

Machine learning is fundamental to solving modern cybersecurity problems, especially
regarding threat analysis, attack forecasting, and user activity monitoring. Unlike traditional
cybersecurity methods, it does not rely on static systems. The theoretical analysis highlights the
requirement for counteractive measures to multifaceted cyberattacks as well as the existence of
problems like dataset imbalance, adversarial susceptibility, and the need for explainability,
particularly regarding “black boxes” which deep learning models are.

The complexities involved with using algorithms to automate threat detection and
response in cybersecurity demonstrate both the promise and risks of machine learning. Machine
learning techniques, whether supervised or unsupervised, make it easier to work with intricate
datasets, allowing users to find deviations and trends in network traffic, user activities, and
other security risks. Nonetheless, the efficient implementation of ML in this area needs a special
focus on data accuracy, available computation resources, and model interpretation. Imbalance
dataset problems which can lead to overfitting require the implementation of methods such as
SMOTE in order to improve the model training through synthetic example generation.
Furthermore, these tools are essential for ensuring that the model withstands smart attacks from
hostile forces through adversarial training and robust optimization techniques. In addition,
automating trust with models requires understanding their workings which is why tools for
interpretability such as SHAP and LIME are needed.

The future scope of research includes both theoretical and practical facets. An area that
requires special attention is improving model explainability with SHAP and LIME, as well as
improving model robustness by some novel approaches to adversarial training. On a more
practical level, there is scope in the optimization of models for use in real-time on resource-
limited devices, such as through TensorFlow Lite, and the use of Generative Adversarial
Networks (GANSs) for producing synthetic data for the evaluation of security systems.
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TEOPETUYHI TA TEXHIYHI ACIIEKTH
BUKOPUCTAHHA MAILIMHHOI'O HABYAHHS B KIBEPBE3ITELT

AHoTaMis. Y CTaTTi JOCHIPKYIOTHCS TEXHIUHI Ta TEOPETUYHI aClIeKTH MallnHHOro Hap4aHHs (ML) y
BUpIIIEHH] Tpo0iieM, MOB’SI3aHUX 31 3POCTAIOHYOI0 CKIAJAHICTIO 3arpo3 KibepOesmeku B 1H(PPOBY
€I10XY, OCKUIbKH IOCTiHE 3pOCTaHHs KiOEp3JIOUMHHOCTI CIIOHYKAE KOPUCTYBaUiB BUKOPHCTOBYBATH
HOBITHI MiZIXO/AW YIS MiJIBUILICHHSI TUIAHKK KiGepOe3neku. JlocmipkeHHs: po3risiae BIPOBaDKEHHS
TexHoJsorii MamuHHOro HaBuaHHsi (ML) sk HapiKHMI KaMiHb NPaKTUYHO Oy/b-SKOI Cy4acHOl
npobnemMu KiOepOe3reky, 30KpeMa IpOIeciB 1 METOMiB, MOB’S3aHMX 3 aHaIi30M MpoOJieM,
BUSIBJICHHSIM, TIPOTHO3YBaHHSIM aTak i HaBITh MOBEAIHKOBUM TpodimtoBanusM. PosrisHyTo, sk ML
3a0e3revye Kpaly peaxiiito MOpiBHIHO 3 TPaIULi HHUMU METOJJAMH, TAKUMHU SIK BUSIBJICHHSI HA OCHOBI
CHTHATYP, TIOSICHIOIOUH, SIK CTA€ MOXJIMBUM aHAJIi3 BEJMKUX OOCATIB IaHUX Yy peasibHOMY uaci. Oriisiz
BKIIMBUX 0COOIMBOCTEH KOHTPOIBLOBAHOI'O Ta HEKOHTPOIBLOBAHOT O HABYAHHS HAJJAETHCS B KOHTEKCTI
BUSIBJICHHSI aHOMAJTI i Ta pO3ITi3HaBaHHs 3JI0BMUCHOI aKTUBHOCTI 3 aKLIEHTOM Ha anroputMu Machine
of Support Vector Machine ta Isolation Forests, a Takox neranbauii orisig moaeni LSTM st ananizy
eBomonii ¢imunaroux URL-aapec. Kpim Toro, mi ajaroputMu Oyiid BHCBITIEHI 3 TOYKH 30pY
TEXHIYHOI peaiizallii: KOHTPOJIbOBaHE HABYAHHS 3a OIMOMOIOI) MAIMH OIOPHUX BEKTOPIB 3
BukopuctanHsM Scikit-Learn s knacudikanii mMepesxeBoro Tpadiky, HABYEHOrO Ha TaKUX
XapaKTepHUCTUKAX, K [P-anpecu 1 mMOpTH, HEKOHTPOIHLOBAHE HABYAHHS 3a JIOMIOMOrOI0 130JIALIHHIX
JICIB JUIs BUSIBIICHHSI aHOMAJIi y 0araTOBUMipHHX JIAHUX, & TAKOXK ITTMOOKE HABYAHHS 38 JIOTIOMOTOI0
Mepex 3 JIOBrorw KopotkoyacHow mam’sattio (LSTM) mis ananizy ¢immurosux URL-agpec. V i
CTaTTi JOCIIJDKYIOThCSI CYTTEBI TPY/AHOLIL B pearizawii anroputmiB ML, Taki sik mucOanaHc Kiacis,
BOPOXI aTaky Ta HeOCTaTHs Mpo3opicTb Mozeni. Taki meroau, sk SMOTE (Synthetic Minority Over-
sampling Technique), PoOMoOHYIOTHCS sl PO3POOKU HABYAILHUX HAOOPIB AaHHX, TOAI K ISl 3aXHUCTY
BiJ 3JIOBMHUCHOTO BHMKOPUCTaHHS MOAENeH MPONOHYIOTBCS METOAM 3MarajbHOTO HABYAHHS Ta
pobactHoi onTrMizamii. Kpim Toro, migkpecieHo poinbk METOIIB MOSICHIOBAHOCTI, TakuxX sk SHAP i1
LIME, mnst moOyoBY J0BipH i IPUAHATTS aBTOMaTH30BaHuX ciucteM ML B kibepOesneri. BusHaueHo
MOJIIMBOCTI TSI TOCHI[DKEHb 1 3aIPONOHOBAHO IPOBECTH ITONAIBIIIE TECTYBAHHS OO0 ITOKPAIICHHS
HAJIWHOCTI MOZIENIEH Ta MOKA3HUKIB MPOAYKTUBHOCTI B OOMEKEHUX YMOBaX.

KarouoBi caoBa: kibepbOesmeka; kiOepaTtakw; KiOep3axucCT, MAaIIMHHE HABYaHHSA, TIHOOKE
HABYAHHS; MAaIlTHHHE HABYAHHS B KiOepOe3meri.
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