АВТОМОБІЛЬНА ЕЛЕКТРОНІКА ТА КІБЕРБЕЗПЕКА: СИСТЕМНИЙ ОГЛЯД АТАК НА БЕЗПЕКУ ТА ЗАХОДІВ ПРОТИДІЇ

Автор(и)

DOI:

https://doi.org/10.28925/2663-4023.2025.28.760

Ключові слова:

автомобільна електроніка, автомобільна кібербезпека, мережі автомобіля, шифрування даних, автентифікація повідомлень, технологія виявлення вторгнень, модуль довіреної платформи, концепція Crypto-Engine.

Анотація

Сучасна автомобільна електроніка – це складна система датчиків, електронних блоків керування (ECU) і виконавчих механізмів, з’єднаних через різні типи автомобільних мереж для контролю та моніторингу стану автомобіля. Крім того, сучасні транспортні засоби все більше підключаються до зовнішнього світу за допомогою технологій автомобілі для всього (V2X). Вони створюють нові поверхні для атак, які збільшують ризик кібербезпеки для сучасних транспортних засобів.

З появою інтелектуальних транспортних структур фокус перемістився до структури узгоджених міжтранспортних систем, символом яких є інтеграція інфраструктури, людей, транспортних засобів, міських територій та навколишнього середовища. Це поєднання комп’ютерних технологій та автомобільних інновацій підняло безліч питань щодо кібератак на автомобілі, які відіграють важливу роль у розробці та використанні автомобільних технологій.

Удосконалена бездротова технологія дозволяє транспортним засобам обмінюватися та передавати інформацію один одному та навколо себе в режимі реального часу, що допоможе зменшити кількість аварій, заторів та підвищити ефективність мобільних засобів.

Багато передових технологій, як-от хмарні обчислення, штучний інтелект, технологія V2X і вдосконалені системи допомоги водієві, все ширше використовуються в автомобілях, що робить транспортні засоби більш інтелектуальними для надання комфортних послуг людям і забезпечення безпеки водіїв і пасажирів. Однак у міру того, як автомобілі стають більш підключеними до Інтернету, бездротових мереж, один з одним та з іншою інфраструктурою транспортних мереж ризик кібератак викликає все більше проблем.

У цієї оглядової статті спочатку аналізуються вразливості мереж автомобіля та визначаються основні атаки кібербезпеки на транспортні засоби. Проаналізовано технології підвищення кібербезпеки мереж транспортних засобів за технологічними напрямами: шифрування даних, автентифікації повідомлень, виявлення вторгнень в мережу, побудови довіреної платформи та реалізацією концепції Crypto-Engine.

Abstract. Modern automotive electronics are a complex system of sensors, electronic control units (ECUs) and actuators connected through various types of automotive networks to control and monitor the condition of the vehicle. In addition, modern vehicles are increasingly connected to the outside world through vehicle-to-everything (V2X) technologies. These create new attack surfaces that increase the cybersecurity risk for modern vehicles.

With the advent of intelligent transportation structures, the focus has shifted to the structure of coordinated inter-vehicle systems, symbolized by the integration of infrastructure, people, vehicles, urban areas and the environment. This combination of computer technology and automotive innovation has raised numerous questions about cyberattacks on cars, which play a significant role in the development and use of automotive technology.

Advanced wireless technology allows vehicles to exchange and transmit information with each other and around them in real time, which will help reduce accidents, congestion and improve the efficiency of mobile vehicles.

Many advanced technologies, such as cloud computing, artificial intelligence, V2X technology, and advanced driver assistance systems, are increasingly being used in cars, making vehicles more intelligent to provide convenient services to people and ensure the safety of drivers and passengers. However, as cars become more connected to the Internet, wireless networks, each other, and other transportation network infrastructure, the risk of cyberattacks is becoming more and more problematic.

This review article first analyzes the vulnerabilities of vehicle networks and identifies the main cybersecurity attacks on vehicles. Technologies for improving the cybersecurity of vehicle networks are analyzed in the following technological areas: data encryption, message authentication, network intrusion detection, building a trusted platform, and implementing the Crypto-Engine concept.

Завантаження

Дані завантаження ще не доступні.

Посилання

Adu-Kyere, A., Nigussie, E., & Isoaho, J. (2023). Self-Aware CybersecurityArchitecture for AutonomousVehicles: Security throughSystem-Level Accountability. Sensors, 23, 8817. https://doi.org/10.3390/s23218817

Aldhyani, T.H.H., & Alkahtani, H. (2022). Attacks to Automatous Vehicles: A Deep Learning Algorithm for Cybersecurity. Sensors, 22, 360.

Al-Jarrah, O.Y., El Haloui, K., Dianati, M., & Maple, C. (2023). A Novel Detection Approach of Unknown Cyber-Attacks for Intra-Vehicle Networks Using Recurrence Plots and Neural Networks. IEEE Open J. Veh. Technol., 4, 271–280.

Andrade, R, Dias Santos, M. M., Justo J. F., Yoshioka, L. R., Hof, H.-J., & Kleinschmidt J. H. (2023). Security architecture for automotive communication networks with CAN FD. Computers & Security, 129, 103203

Askaripoor, H., Hashemi Farzaneh, M., & Knoll, A. (2022). E/E Architecture Synthesis: Challenges and Technologies. Electronics, 11, 518. https://doi.org/10.3390/electronics11040518

Baldanzi, L., Crocetti, L., Bertolucci, M., Fanucci, L., & Saponara, S. (2019). Analysis of Cybersecurity Weakness in Automotive In-Vehicle Networking and Hardware Accelerators for Real-time Cryptography. In book: Applications in Electronics Pervading Industry, Environment and Society, 11–18. https://doi.org/10.1007/978-3-030-11973-7_2

Bari, B. S., Yelamarthi, K., & Ghafoor, S. (2023). Intrusion Detection in Vehicle Controller Area Network (CAN) Bus Using Machine Learning: A Comparative Performance Study. Sensors, 23, 3610.

Casillo, M., Coppola, S., Santo, M.D., Pascale, F., & Santonicola, E. (2019). Embedded intrusion detection system for detecting attacks over CAN-BUS. In Proceedings of the 4th International Conference on System Reliability and Safety.

Chandwani, A., Dey, S., & Mallik, A. (2020). Cybersecurity of Onboard Charging Systems for Electric Vehicles-Review, Challenges and Countermeasures. IEEE Access, 8, 226982–226998.

De Vincenzi, M., Costantino, G., Matteucci, I., Fenzl, F., Plappert, C., Rieke, R., & Zelle, D. (2024). A Systematic Review on Security Attacks and Countermeasures in Automotive Ethernet. ACM Comput. Surv., 56, 135.

El-Rewini, Z., Sadatsharan, K., Selvaraj, D. F., Plathottam, S. J., & Ranganathan, P. (2020). Cybersecurity Challenges in Vehicular Communications. Vehicular Communications, 23, 100214.

El-Rewini, Z., Sadatsharan, K., Sugunaraj, N., Selvaraj, D.F., Plathottam, S.J., & Ranganathan, P. (2020). Cybersecurity Attacks in Vehicular Sensors. IEEE Sens. J., 20, 13752–13767.

Fernandes, R. S. (2023) Vehicle Electronics and Cybersecurity: Current Interactions, Vulnerabilities, and Recommendations. European mobility group. Report from UTAC. https://www.mobilitygroup.eu/emg-members-other-news/vehicle-electronics-and-cybersecurity

Guan, T., Han, Y., Kang, N., Tang, N., Chen, X., & Wang, S. (2022). An Overview of Vehicular Cybersecurity for Intelligent Connected Vehicles. Sustainability, 14, 5211. https://doi.org/10.3390/su14095211

Harvey, J., & Kumar, S. (2020). A survey of intelligent transportation systems security: Challenges and solutions. Proc. IEEE 6th Int. Conf. Big Data Security Cloud (BigDataSecurity) IEEE Int. Conf. High Perform. Smart Comput. (HPSC) IEEE Int. Conf. Intell. Data Security (IDS), 263-268. https://ieeexplore.ieee.org/document/9123012

Islam, R., & Refat, R. U. D. (2020). Improving CAN bus security by assigning dynamic arbitration Ids. Journal of Transportation Security, 13, 19-31. https://link.springer.com/article/10.1007/s12198-020-00208-0

Khalid Khan, S., Shiwakoti, N., & Stasinopoulos, P. (2022). A Conceptual System Dynamics Model for Cybersecurity Assessment of Connected and Autonomous Vehicles. Accident Analysis & Prevention, 165, 106515.

Khan, Z., Chowdhury, M., Islam, M., Huang, C.Y., & Rahman, M. (2019). In-vehicle false information attack detection and mitigation framework using machine learning and software defined networking. arXiv:1906.10203.

Kifor, C. V., & Popescu A. (2024). Automotive Cybersecurity: A Survey on Frameworks, Standards, and Testing and Monitoring Technologies. Sensors, 24, 6139. https://doi.org/10.3390/s24186139

Klimushin, P., Solianyk, T., Kolisnyk, T., & Mozhaev, O. (2021). Potential application of hardware protected symmetric authentication microcircuitsto ensure the securityof internet of things. Advanced Information Systems, 5, 103-111. https://doi.org/10.20998/2522-9052.2021.3.14

Klimushyn, P., Solianyk, T., Mozhaev, O., Nosov, V., Kolisnyk, T., & Yanov, V. (2021), Hardware support procedures for asymmetric authentication of the internet of things. Innovative Technologies and Scientific Solutions for Industries, 4 (18), 31–39. https://doi.org/10.30837/ITSSI.2021.18.031

Klimushyn, P., Solianyk, T., Mozhaiev, O., Gnusov, Y., Manzhai, O., & Svitlychny, V. (2022). Crypto-resistantmethods and random number generatorsin internet of things (IOT) devices. Innovative Technologies and Scientific Solutions for Industries, 2(20), 22–34. https://doi.org/10.30837/ITSSI.2022.20.022

Kong, Q.L., Lu, R.X., Yin, F., & Cui, S.G. (2021). Blockchain-Based Privacy-Preserving Driver Monitoring for MaaS in the Vehicular IoT. IEEE Trans. Veh. Technol., 70, 3788–3799.

Kukkala, V. K., Thiruloga, S. V., & Pasricha, S. (2022). Roadmap for Cybersecurity in Autonomous Vehicles. IEEE Consumer Electronics Magazine, 11, 13–23. https://doi.org/10.48550/arXiv.2201.10349

Lampe, B., & Meng, W. (2023). Intrusion Detection in the Automotive Domain: A Comprehensive Review. IEEE Communications Surveys & Tutorials, 25(4). https://doi.org/10.1109/COMST.2023.3309864

Ma, R., Cao, J., Feng, D., Li, H., Li, X., & Xu, Y. (2022). A robust authentication scheme for remote diagnosis and maintenance in 5G V2N. J. Netw. Comput. Appl, 198, 103281.

Mokhadder, M., Zachos, M., & Potter, J. (2023). Evaluation of vehicle system performance of an SAE J1939-91C network security implementation, Proc. WCX SAE World Congr. Exp., 6. https://saemobilus.sae.org/content/2023-01-0041

Pape, S., Syed-Winkler, S., Garcia, A.M., Chah, B., Bkakria, A., Hiller, M., Walcher, T., Lombard, A., Abbas-Turki, A., & Yaich, R. (2023). A Systematic Approach for Automotive Privacy Management. In Proceedings of the 7th ACM Computer Science in Cars Symposium CSCS.

Pervez, L., Khan, A., & Ain, N. (2020). Cyber Security Challenge in an Automobile. International Journal of Scientific and Research Publications, 10(12), 162–166. https://doi.org/10.29322/IJSRP.10.12.2020.p10815

Qayyum, A., Usama, M., Qadir, J., & Al-Fuqaha, A. (2020). Securing connected & autonomous vehicles: Challenges posed by adversarial machine learning and the way forward. IEEE Commun. Surv. Tutor., 22, 998–1026.

Rajapaksha, S., Kalutarage, H., Al-Kadri, M.O., Petrovski, A., Madzudzo, G., & Cheah, M. (2023). AI-Based Intrusion Detection Systems for In-Vehicle Networks: A Survey. ACM Comput. Surv., 55, 237.

Rodriguez, E., Otero, B., & Canal, R. (2023). A Survey of Machine and Deep Learning Methods for Privacy Protection in the Internet of Things. Sensors, 23, 1252.

Sabaliauskaite, G., Bryans, J., Jadidbonab, H., Ahmad, F., Shaikh, S., & Wooderson, P. (2024). TOMSAC-Methodology for Trade-off Management between Automotive Safety and Cyber Security. Comput. Secur., 140, 103798.

Shin, Y., & Jeon, S. (2024). MQTree: Secure OTA Protocol Using MQTT and MerkleTree. Sensors, 24, 1447.

Tiberti, W., Civino, R., Gavioli, N., Pugliese, M., & Santucci, F. (2023). A Hybrid-Cryptography Engine for Securing Intra-Vehicle Communications. Appl. Sci. 13, 13024. https://doi.org/10.3390/app132413024

VanWyk, F., Wang, Y., Khojandi, A., & Masoud, N. (2020). Real-time sensor anomaly detection and identification in automated vehicles. IEEE Trans. Intell. Transp. Syst., 21, 1264–1276.

Vehicle Electronics and Cybersecurity: Current Interactions, Vulnerabilities, and Recommendations. European mobility group. Report from UTAC. (2023). https://www.mobilitygroup.eu/emg-members-other-news/vehicle-electronics-and-cybersecurity

Wang, P., Wu, X., & He, X. (2020). Modeling and Analyzing Cyberattack Effects on Connected Automated Vehicular Platoons. Transportation Research Part C: Emerging Technologies, 115, 102625.

Wang, Z., & Li, X. (2021). Intrusion prevention system design. Proc. Int. Conf. Inf. Eng. Appl. (IEA), 218, 375-382, URL: https://link.springer.com/chapter/10.1007/978-1-4471-4847-0_47

Wu, Z., Tian, E., & Chen, H. (2023). Covert Attack Detection for LFC Systems of Electric Vehicles: A Dual Time-Varying Coding Method. IEEE/ASME Trans. Mechatron, 3(28), 681–691.

Wu,W., Li, R., Xie, G., An, J., Bai, Y., Zhou, J., & Li, K. (2020). A survey of intrusion detection for in-vehicle networks. IEEE Trans. Intell. Transp. Syst., 21, 919–933.

Downloads


Переглядів анотації: 0

Опубліковано

2025-06-26

Як цитувати

Клімушин, П., Світличний, В., Гнусов, Ю., & Онищенко, Ю. (2025). АВТОМОБІЛЬНА ЕЛЕКТРОНІКА ТА КІБЕРБЕЗПЕКА: СИСТЕМНИЙ ОГЛЯД АТАК НА БЕЗПЕКУ ТА ЗАХОДІВ ПРОТИДІЇ. Електронне фахове наукове видання «Кібербезпека: освіта, наука, техніка», 4(28), 115–136. https://doi.org/10.28925/2663-4023.2025.28.760