МЕТОД ПОБУДОВИ ПРОФІЛІВ КОРИСТУВАЧА МАРКЕТПЛЕЙСУ І ЗЛОВМИСНИКА
DOI:
https://doi.org/10.28925/2663-4023.2021.14.5067Ключові слова:
маркетплейс, профіль користувача, модель користувача, дерево рішень, профілювання поведінкиАнотація
Кількість і складність кіберзлочинів постійно зростає. З’являються нові різновиди атак і конкурентної боротьби. Кількість систем зростає швидше, ніж навчаються нові спеціалісти з кібербезпеки, тому все складніше стає відслідковувати вручну в режимі реального часу дії користувачів. Особливо активно розвивається електронна торгівля. Не всі ретейлери мають достатній ресурс для підтримки власних інтернет-крамниць, тому вони вимушені співпрацювати з посередниками. Роль посередників все частіше виконують спеціальні торгівельні площадки зі своїми електронними каталогами (вітринами), сервісами оплати і логістики, контролем якості – маркетплейси. У статті розглянута проблема захисту персональних даних користувачів маркетплейсу. Метою статті є розробка математичної моделі поведінки для підвищення захисту персональних даних користувача для протидії фроду (антифроду). Профілювання може бути побудоване за двома напрямками: профілювання легітимного користувача і зловмисника (питання прибутковості та скорінгу виходять за межі даного дослідження). Профілювання користувача побудоване на типовій поведінці, сумах і кількості товарів, швидкості наповнення електронного візочка, кількість відмов і повернень тощо Досліджено основні алгоритми побудови поведінкового профілю користувачів та застосовано метод виявлення порушника шляхом порівняння його дій з діями середньостатистичного користувача. Запропоновано власну модель профілювання поведінки користувачів на основі мови програмування Python та бібліотеки Scikit-learn методом випадкового лісу, лінійної регресії й дерева рішень, використано метрику застосовуючи матрицю помилок, проведено оцінку алгоритмів. У результаті порівняння оцінки даних алгоритмів трьох методів, метод лінійної регресії показав найкращі результати: A – 98,60%, P – 0,01%, R – 0,54%, F – 0,33%. Правильно визначено 2% порушників, що відповідно позитивно впливає на захист персональних даних.
Завантаження
Посилання
Zachek, O., Dmytryk, Y. (2020). Application of Profiling to Combat Cyber Crime. Social Legal Studios 10(4), 94–100. doi:10.32518/2617-4162-2020-4-94-100.
Kirwan, G., Power, A. (2012). The Psychology of Cyber Crime. Advances in Digital Crime, Forensics, and Cyber Terrorism. doi:10.4018/978-1-61350-350-8.
Shinder, D., Tittel, E. (2002). Scene of the Cybercrime—Computer Forensics Handbook, 1st ed. Syngress Publishing.
Warikoo, A. (2014). Proposed Methodology for Cyber Criminal Profiling. Information Security Journal: A Global Perspective 23(4-6), 172–178. doi:10.1080/19393555.2014.931491.
Georgiev, V. (2019). Profiling Human Roles in Cybercrime. Information & Security: An International Journal 43(2), 145–160. doi:10.11610/isij.4313.
Turney, B. E. (2012). Criminal Profiling: An Introduction to Behavior Evidence Analysis. Fourth Edition (Elsevier, Oxford).
Conclusion. (1999). Geographic Profiling. doi:10.1201/9781420048780.ch12.
Muller, D. A. (2000). Criminal Profiling. Homicide Studies 4(3), 234–264. doi:10.1177/1088767900004003003.
Herndon, J. S., Kocsis, R. N. (2006). Criminal Profiling: Principles and Practice. Journal of Police and Criminal Psychology 22(1), 57–58. doi:10.1007/s11896-007-9005-4.
Rimestad, S. (2015). Seksualitāte un sociāla kontrole Latvijā 1914–1939, INETA LIPŠA, Rīga, Zinātne, 2014. ISBN 978-9984-879-65-9. Journal of Baltic Studies 46(3), 416–419. doi:10.1080/01629778.2015.1073921.
Kipane, A. (2019). Meaning of Profiling of Cybercriminals in the Security Context. SHS Web of Conferences. Vol. 68. P. 01009. URL: https://doi.org/10.1051/shsconf/20196801009.
Kshetri N. (2010). The Global Cybercrime Industry: Economic, institutional and Strategic Perspectives. Heidelberg : Springer, 2010. isbn:9783642115219.
Forests of Randomized Trees. https://scikit-learn.org/stable/modules/ensemble.html#
forests-of-randomized-trees.
Labintcev, E. (2017). Metrics in Machine Learning Problems. https://habr.com/ru/
company/ods/blog/328372/.
Robinson, S. K-Nearest Neighbors Algorithm in Python and Scikit-Learn. https://stackabuse.com/k-nearest-neighbors-algorithm-in-python-and-scikit-learn/.
Installing Scikit-Learn. https://scikit-learn.org/stable/install.html.
Geetha, P., Naikodi, C., Suresh, L. (2020). K-Anonymization based Temporal Attack Risk Detection using machine learning paradigms. Journal of Circuits, Systems and Computers. doi:10.1142/S021812662150050X.
Protection of Personal Data. (2016). Security and Privacy in the Digital Era, 29–38. doi:10.1002/9781119347750.ch2.