THE METHOD OF DEVELOPING A CLASSIFIER USING THE BAYES THEOREM FOR MAKING A DECISION ON THE DETERMINATION OF TRUE INFORMATION

Authors

DOI:

https://doi.org/10.28925/2663-4023.2022.18.108123

Keywords:

classifier; clustering; space of images; Bayes theorem; truthfulness of information, a priori probability

Abstract

The range of application of cluster analysis is very wide: it is used in archeology, medicine, psychology, biology, public administration, regional economy, marketing, sociology and other disciplines. Each discipline has its own requirements for primary data and rules for forming groups. Obviously, there will be different methodological approaches to market segmentation, the purpose of which is to identify groups of objects that are similar in terms of features and properties and to the formation of clusters that unite to strengthen their competitive advantages. Thus, when processing information in the information space, the methodology is usually aimed at building a mathematical model of cluster analysis of the object or phenomenon under study, and even obtaining an answer to the question: "Is the information true or not." Detecting false information in the digital world is an important task in overcoming the widespread spread of rumors and prejudices.

The paper analyzes the existing methods of information classification in the information age. Formulate the signs of the information age, in the context of determining the veracity of information. Based on the main features of the information age, a method of creating a classifier has been developed to solve the problems of determining the veracity of information.

Mathematical modeling was carried out using the developed classifier to confirm the developed method of decision-making about the veracity of information using the Bayes theorem. The obtained results proved the efficiency of the proposed method of developing a classifier for which, when applying the Bayes theorem for decision-making, it is possible to determine the veracity of information.

But the developed Bayesian classifier is based on the fact that the a priori probabilities of the hypotheses are known. Therefore, the direction of further research is the development or improvement of methods and algorithms for determining the a priori probability of hypotheses.

Downloads

Download data is not yet available.

References

Nakonechnyi, V., Laptiev, O., Pohasii, S., Lazarenko, S., Martyniuk, H. (2021). Vidbir dzherel z nepravdyvoiu informatsiiu metodom bdzholynoi kolonii. Naukoiemni tekhnolohii. Informatsiini tekhnolohii, kiberbezpeka, 52(4), 330-337.

Zamrii, I., Sobchuk, V., Laptiev, O., Savchenko, V., Shkapa, V., Kovalenko, V., Kotok, V. (2022). Fractal Functions and Their Application to Source Data Coding. ARPN Journal of Engineering and Applied Sciences, 17(4), 424 – 435.

Laptieva, T. (2021). Alhorytm vyznachennia miry isnuvannia nedostovirnoi informatsii v umovakh informatsiinoho protyborstva. Kiberbezpeka: osvita, nauka, tekhnika, 2(14), 15-25. https://doi.org/10.28925/2663-4023.2021.14.1525.

Nakonechnyi, V. S., Barabash, O. V., Laptieva, T. O., Mishchenko, A. V. (2022). Udoskonalennia metodu vyiavlennia ta klasterizatsii dzherel nepravdyvoi informatsii. Naukoiemni tekhnolohii. Informatsiini tekhnolohii, kiberbezpeka, 54(4),105 - 111 https://doi.org/10.18372/2310-5461.54.16747

Zhyhalkevych, Zh.M. (2014). Klastery vzaiemodiiuchykh pidpryiemstv ta yikh klasyfikatsiia. Visnyk ONU imeni I.I. Mechnykova, 19(2/3), 98-101.

Laptieva, T.O., Lukova-Chuiko, N.V., Sobchuk, A.V. (2022). Doslidzhennia osnovnykh zahroz i otsinka bezpeky informatsiinykh system. Matematyka. Informatsiini tekhnolohii. Osvita. U KhI Mizhnar. nauk.–prakt. konf., 3–5 chervnia 2022 r. Lutsk–Svitiaz: SNU imeni Lesi Ukrainky (s. 101-103).

Riabyi, M. O., Khatian, O. A., Bahatskyi, C. P. (2015). Model vyiavlennia PR-vplyvu cherez publikatsii v internet ZMI. Informatsiina bezpeka, 21(2), 131-139.

Polishchuk, Yu. Ya., Hnatiuk, S. O., Seilona, P. A. (2015). Mac media yak kanal manipuliatyvnoho vplyvu na suspilstvo. Informatsiina bezpeka, 21(3), 301-308.

Theocharis, V., Lowe, W., W. van Deth, J., Garcla-Albacete, G. (2015).Using Twitter to mobilize protest action: Online mobilization patterns and action repertoires in the Occupy Wall Street, Indignados, and Aganaktismenoi movements. Information, Communication & Society, 18, 202-220.

Butko, T., Prokhorchenko, A., Muzykin, M. (2016). An improved method of determining the schemes of locomotive circulation with regard to the technological peculiarities of railcar traffic. Eastern-European Journal of Enterprise Technologies, 5(3(83)), 47–55. https://doi.org/10.15587/1729-4061.2016.80471.

Molodetska, K. V. (2016). Pidkhid do vyiavlennia orhanizatsiinykh oznak informatsiinykh operatsii u sotsialnykh internet-servisakh. Priorytetni napriamky rozvytku telekomunikatsiinykh system ta merezh spetsialnoho pryznachennia. Zastosuvannia pidrozdiliv, kompleksiv, zasobiv zviazku ta avtomatyzatsii v ATO: zbirn. mater. IX nauk.-prakt. konf., 25 lystop. 2016 r. (c. 130-131). VITI.

Faraz, A. (2016). A comparison of text Categorization methods. International Journal on Natural Language Computing, 5(1), 31 -44.

Laptiev, O.A., Babenko, R.V., Pravdyvyi, A.M., Zozulia, S.A., Stefurak, O.R. (2020). Udoskonalena metodyka vyboru poslidovnosti priorytetiv obsluhovannia potokiv informatsii. Naukovo-praktychnyi zhurnal «Zviazok», 4(146 ), 27 – 31.

Svynchuk, O., Barabash, O., Nikodem, J., Kochan, R., Laptiev, O. (2021). Image compression using fractal functions.Fractal and Fractional, 5(2), 1-14. https://doi.org/10.3390/fractalfract5020031 - 14 Apr 2021

Zamrii, I., Sobchuk, V., Laptiev, O., Savchenko, V., Shkapa, V., Kovalenko, V., Kotok, V. (2022). Fractal Functions and Their Application to Source Data Coding. ARPN Journal of Engineering and Applied Sciences, 17(4), 424 – 435

Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O. (2021). Synergy of building cybersecurity systems. Publisher PC TECHNOLOGY CENTER. https://doi.org/10.15587/978-617-7319-31-2

Downloads


Abstract views: 226

Published

2022-12-29

How to Cite

Lukova-Chuiko, N., & Laptieva, T. (2022). THE METHOD OF DEVELOPING A CLASSIFIER USING THE BAYES THEOREM FOR MAKING A DECISION ON THE DETERMINATION OF TRUE INFORMATION. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 2(18), 108–123. https://doi.org/10.28925/2663-4023.2022.18.108123