ONTOLOGICAL MODELING OF INFORMATION DATA OF DIGITAL CRIMINAL CRIME

Authors

DOI:

https://doi.org/10.28925/2663-4023.2023.21.211222

Abstract

In the article, an ontological model of information data of a digital criminal offense is formed and researched. Ontological modeling made it possible to conceptualize knowledge and effectively overcome the problems of insufficient structure, ambiguity and inconsistency of data and knowledge in the field of digital forensics. On the basis of the conducted classification, five main classes (Digital Crime, Digital Traces, Types of Crimes, Criminal and Criminal Liability) were identified, which include multiple user and non-user instances, including relevant articles of the Criminal Code of Ukraine and international law. The user creates instances of three classes: Digital Crime, Digital Traces, and Criminal. They contain personal information about digital crime and are the main data of the user part of the ontological model as a knowledge base. The Crime Types and Criminal Liability classes are non-user and can only be modified by model support specialists. The ontology model is implemented in Protege in the OWL language, which is an informal standard for creating and sharing ontologies. Of the selected seven relationships between entities, only three are entered into the ontology by the user, the others are formed automatically based on the developed SWRL rules. Using the SPARQL query language, real-time information search, filtering, and analysis patterns are provided to help discover complex relationships between objects and generate new ontological knowledge. The results of the study highlight the importance of ontology modeling in the field of digital forensics and how SPARQL queries can be used to improve data processing, analysis and understanding of knowledge in this field.

Downloads

Download data is not yet available.

References

Federal Bureau of Investigation. (2022). Internet Crime Report 2022. https://www.ic3.gov/Media/PDF/AnnualReport/2022_IC3Report.pdf

Pro zareyestrovani kryminalni pravoporushennya ta rezultati yikh dosudovoho rozsliduvannya [About Registered Criminal Offenses and the Results of Their Preliminary Investigation]. https://gp.gov.ua/ua/posts/pro-zareyestrovani-kriminalni-pravoporushennya-ta-rezultati-yih-dosudovogo-rozsliduvannya-2

Kryminalnyi kodeks Ukrainy [Criminal Code of Ukraine]. https://zakon.rada.gov.ua/laws/show/2341-14

Brady, O., Overill, R., & Keppens, J. (2014). Addressing the increasing volume and variety of digital evidence using an ontology. In 2014 IEEE Joint Intelligence and Security Informatics Conference (pp. 176-183). IEEE. DOI: 10.1109/JISIC.2014.34

Карі, Н. М., & Вентер, Х. С. (2014). Toward a general ontology for digital forensic disciplines. Journal of Forensic Sciences, 59(5), 1231-1241.

Ellison, D., Ikuesan, R. A., & Venter, H. S. (2019, November). Ontology for reactive techniques in digital forensics. In 2019 IEEE Conference on Application, Information and Network Security (AINS) (pp. 83-88). IEEE.

Palagin, A., & Petrenko, N. (2009). System-ontological analysis of the subject area, Control systems and machines, 4, 3-14.

Lutskaya, N., Vlasenko, L., Zaiets, N., & Shtepa, V. (2021). Ontological Aspects of Developing Robust Control Systems for Technological Objects. In ICO 2020: Intelligent Computing and Optimization (Vol. 1324, pp. 1252-1261). Advances in Intelligent Systems and Computing book series. DOI: 10.1007/978-3-030-68154-8_107

Vlasenko L. O., Savchenko T. V., & Lutska N. M. (2021). Vybir ierarkhii ta ontolohii verkhnoho rivnia dlia rozrobky intelektualnykh avtomatyzovanykh system upravlinnia promyslovym pidpryiemstvom [Selection of Hierarchy and Top-Level Ontology for the Development of Intelligent Automated Control Systems for Industrial Enterprises]. Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohii, 27(4), 16-27. http://sw.nuft.edu.ua/Archiv/2021/swnuft_27_4.pdf.pdf

Smith, B. (2003). Blackwell guide to the philosophy of computing and information: Chapter ontology. Blackwell, 39, 61-64.

Konventsiya pro kiberzlochynnist, uhvalena Radoyu Yevropy 23 lystopada 2001 r. [Convention on Cybercrime, adopted by the Council of Europe on November 23, 2001]. https://zakon.rada.gov.ua/laws/show/994_575

Lutska N. M., Vlasenko L. O., & Pupena O. M. (2021). Tekhnichni aspekty intehratsii vidkrytykh ontolohichnykh baz znan iz suchasnymy avtomatyzovanymy systemamy upravlinnia [Technical Aspects of Integrating Open Ontological Knowledge Bases with Modern Automated Management Systems]. Naukovi pratsi Natsionalnoho universytetu kharchovykh tekhnolohii, 27(1), 8-21. http://dspace.nuft.edu.ua/jspui/handle/123456789/32860

Downloads


Abstract views: 256

Published

2023-09-28

How to Cite

Vlasenko, L., Lutska, N., Savchenko, T., & Bohdanov, O. (2023). ONTOLOGICAL MODELING OF INFORMATION DATA OF DIGITAL CRIMINAL CRIME. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 1(21), 211–222. https://doi.org/10.28925/2663-4023.2023.21.211222