DEEP AUTOENCODERS FOR INFORMATION HIDDEN: MODERN APPROACHES AND DEVELOPMENT PROSPECTS

Authors

DOI:

https://doi.org/10.28925/2663-4023.2025.28.765

Keywords:

deep autoencoders, steganography, information security, deep learning, neural networks

Abstract

This article considers the possibilities of using deep autoencoders in the field of information hiding (steganography). It is shown that the combination of steganography methods with deep learning allows to increase the reliability of the system and increase the bandwidth of the hidden data transmission channel. A comparative review of modern autoencoder architectures is carried out, the principles of encoding and decoding are analyzed, and the generalized results of experimental studies are presented, demonstrating the effectiveness of the proposed approaches. The prospects for the development of this area are assessed in terms of security, efficiency and resistance to attacks through a detailed analysis of potential vulnerabilities and scenarios of practical implementation. The results of the study indicate the significant potential of deep autoencoders in the field of information security, in particular for integration with steganographic methods. A number of recommendations are proposed for further improvement of the technology, including optimization of the architecture of neural networks, expansion of the scope of applications and consideration of ethical and legal aspects.

Downloads

Download data is not yet available.

References

Bender, W., Gruhl, D., Morimoto, N., & Lu, A. (1996). Techniques for data hiding. IBM Systems Journal, 35(3–4), 313–336. https://doi.org/10.1147/sj.353.0313

Cox, I. J., Miller, M. L., Bloom, J. A., Fridrich, J., & Kalker, T. (2008). Digital watermarking and steganography. Morgan Kaufmann.

Johnson, N. F., & Katzenbeisser, S. (1998). A survey of steganographic techniques. In Information hidingб 43–78. Springer.

Zhu, J., Kaplan, R., Johnson, J., & Fei-Fei, L. (2018). HiDDeN: Hiding data with deep networks. Advances in Neural Information Processing Systems, 31.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. https://doi.org/10.1126/science.1127647

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning, 1096–1103. https://doi.org/10.1145/1390156.1390294

Zhou, C., & Paffenroth, R. (2017). Anomaly detection with robust deep autoencoders. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 665–674. https://doi.org/10.1145/3097983.3098052

Hayes, J., & Danezis, G. (2017). Generating steganographic images via adversarial training. Advances in Neural Information Processing Systems, 30.

Montgomery, D. C. (2017). Design and Analysis of Experiments. John Wiley & Sons.

Gupta, S., Joshi, R. C., & Misra, M. A. (2019). SeGAN: Segment-based image steganography using generative adversarial network. IET Image Processing, 13(10), 1706–1713. https://doi.org/10.1049/iet-ipr.2018.6233

Lu, X., Li, B., & Huang, J. (2019). GAN-based image steganography: review and research trends. IEEE Access, 7, 179097–179110. https://doi.org/10.1109/ACCESS.2019.2958574

Zhang, R., Wang, S., & Wang, L. (2021). Robust deep steganography with pixelwise adversarial training. Neural Computing and Applications, 33, 2357–2369. https://doi.org/10.1007/s00521-020-05047-2

Hinton, G. E. (2012). A practical guide to training restricted Boltzmann machines. In Neural Networks: Tricks of the Trade (pp. 599–619). Springer. https://doi.org/10.1007/978-3-642-35289-8_32

Fridrich, J. (2009). Steganography in digital media: principles, algorithms, and applications. Cambridge University Press.

Provos, N., & Honeyman, P. (2003). Hide and seek: An introduction to steganography. IEEE Security & Privacy, 1(3), 32–44. https://doi.org/10.1109/MSECP.2003.1203220

Nissar, A. U., & Mir, A. H. (2010). Classification of steganalysis techniques: A study. Digital Signal Processing, 20(6), 1758–1770. https://doi.org/10.1016/j.dsp.2010.01.017

Li, B., Luo, X., Liu, T., & Huang, J. (2011). A survey on image steganography and steganalysis. Journal of Information Hiding and Multimedia Signal Processing, 2(2), 142–172.

Ker, A. D. (2005). Steganalysis of LSB matching in grayscale images. IEEE Signal Processing Letters, 12(6), 441–444. https://doi.org/10.1109/LSP.2005.847889

Kessler, G. C. (2010). Steganography: Encoders/decoders. In Handbook of Information Security, 1, 14–23. Wiley.

Petitcolas, F. A. P., Anderson, R. J., & Kuhn, M. G. (1999). Information hiding - a survey. Proceedings of the IEEE, 87(7), 1062–1078. https://doi.org/10.1109/5.771065

Reddy, A., Acharya, N., & Mandal, J. K. (2018). A new approach to transform domain-based robust steganography using wavelet families. Arabian Journal for Science and Engineering, 43, 5079–5090. https://doi.org/10.1007/s13369-018-3205-0

Ye, J., Ni, Z., & Ni, R. (2018). Deep embedding in DCT domain for image steganography. Proceedings of ICIP, 2336–2340. https://doi.org/10.1109/ICIP.2018.8451402

Liu, Z., Su, Z., Hou, D., & Li, H. (2018). A robust CNN-based method for image steganography and steganalysis. Multimedia Tools and Applications, 77, 21769–21785. https://doi.org/10.1007/s11042-018-6089-1

Tang, S., & Wu, X. (2020). Adaptive steganography based on deep reinforcement learning. Neurocomputing, 370, 35–46. https://doi.org/10.1016/j.neucom.2019.08.090

Yu, W., & Chen, S. (2021). Improved autoencoder-based image steganography. IEEE Access, 9, 41395–41406. https://doi.org/10.1109/ACCESS.2021.3064091

Duan, Y., Yang, B., & Gao, H. (2021). Deep hiding in video frames with convolutional neural networks. Information Sciences, 551, 27–43. https://doi.org/10.1016/j.ins.2020.11.038

Ullah, H., Mohammed, N., & Rahman, M. A. (2022). Hybrid data hiding approach for color images using deep autoencoder. Computers & Security, 114, 102589. https://doi.org/10.1016/j.cose.2021.102589

Singh, K., & Singh, B. (2022). Implementation of robust image steganography using deep autoencoders. Future Generation Computer Systems, 136, 60–72. https://doi.org/10.1016/j.future.2022.06.004

Downloads


Abstract views: 0

Published

2025-06-26

How to Cite

Prokopovych-Tkachenko, D. (2025). DEEP AUTOENCODERS FOR INFORMATION HIDDEN: MODERN APPROACHES AND DEVELOPMENT PROSPECTS. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 4(28), 150–161. https://doi.org/10.28925/2663-4023.2025.28.765