NEURO-FUZZY ANFIS SYSTEM FOR ASSESSING THE RISK OF DISINFORMATION UNDER INFORMATION-WARFARE CONDITIONS

Authors

DOI:

https://doi.org/10.28925/2663-4023.2025.28.805

Keywords:

disinformation risk, neuro-fuzzy system, ANFIS, risk assessment, information warfare, disinformation modelling, information space, cybersecurity

Abstract

The article analyses and develops a methodology for using a neuro-fuzzy ANFIS system to assess the risk of disinformation during information warfare. We propose integrating content-based, network and psychological factors to calculate a single risk indicator (RiskScore) for disinformation spread. The model’s input variables include content characteristics (e.g., truthfulness or emotional tone), network metrics (e.g., propagation speed, reproduction number R₀), and audience psychology (trust level, susceptibility to manipulation, etc.). These variables feed an adaptive fuzzy system that applies a rule-based IF-THEN framework to produce a fuzzy logic risk evaluation. The ANFIS architecture can be trained on limited or synthetic data by tuning rule parameters and membership functions to enhance accuracy. The approach demonstrates an ability to combine heterogeneous factors into a unified metric, enabling early detection of potentially dangerous disinformation campaigns. Combining epidemiological indicators (such as R₀) with content-psychological features through fuzzy logic improves the informativeness of risk estimates, especially in information-warfare settings. Deploying an ANFIS-based risk-assessment model can help government and defence bodies prioritise counter-disinformation efforts, outperforming traditional linear models, epidemiological SIR models and classical Mamdani fuzzy systems in flexibility. The results provide a foundation for further model development.

Downloads

Download data is not yet available.

References

Guzmán Rincón, A., Barragán Moreno, S., Rodríguez-Canovas, B., & Mondragón-Cardona, A. (2023). Social networks, disinformation and diplomacy: A dynamic model for a current problem. Humanities and Social Sciences Communications, 10(1), 1–14. https://doi.org/10.1057/s41599-023-01998-z

van der Linden, S. (2022). Misinformation: Susceptibility, spread, and interventions to immunize the public. Nature Medicine, 28, 460–467. https://doi.org/10.1038/s41591-022-01713-6

Maleki, M., Mead, E., Arani, M., & Agarwal, N. (2021). Using an epidemiological model to study the spread of misinformation during the Black Lives Matter movement [Preprint]. arXiv. https://arxiv.org/abs/2103.12191

Govindankutty, S., & Gopalan, S. P. (2024). Epidemic modeling for misinformation spread in digital networks through a social intelligence approach. Scientific Reports, 14, 19100. https://doi.org/10.1038/s41598-024-69657-0

Ravichandran, B. D., & Keikhosrokiani, P. (2023). Classification of COVID-19 misinformation on social media based on neuro-fuzzy and neural network: A systematic review. Neural Computing and Applications, 35(1), 699–717. https://doi.org/10.1007/s00521-022-07797-y

Kozhukhivskyi, A. D., & Kozhukhivska, O. A. (2022). Developing a fuzzy risk assessment model for ERP-systems. Radio Electronics, Computer Science, Control, (1), 12. https://doi.org/10.15588/1607-3274-2022-1-12

Adaptive neuro-fuzzy inference system. (n.d.). Wikipedia. https://en.wikipedia.org/wiki/Adaptive_neuro

_fuzzy_inference_system

Pérez-Pérez, E.-J., López-Estrada, F.-R., Puig, V., & Ocampo-Martínez, C. (2022). Fault diagnosis in wind turbines based on ANFIS and Takagi–Sugeno interval observers. Expert Systems with Applications, 206, 117698. https://doi.org/10.1016/j.eswa.2022.117698

Toliupa, S. V., & Kulko, A. A. (2025). Neuro-fuzzy intrusion-detection system for a critical-infrastructure information network. Cyberbezpeka: Osvita, Nauka, Tekhnika, 3(27), 233–247. https://doi.org/10.28925/2663-4023.2025.27.750

Lakhno, V. K., Blozva, A. V., Chasnovskyi, Ye. O., & Biriukov, O. A. (2021). Information security audit based on a neuro-fuzzy system. Technical Sciences and Technologies, (3)(25), 125–137. https://doi.org/10.25140/2411-5363-2021-3(25)-125-137

Malyar, M. M., Polishchuk, A. V., Polishchuk, V. V., & Sharkadi, M. M. (2019). Neuro-fuzzy model for multicriteria evaluation. Radioelektronika, Informatyka, Upravlinnia, (4), 83–91. https://doi.org/10.15588/1607-3274-2019-4-8

Rakytianska, H. B. (2016). Hierarchical neuro-fuzzy inverse-inference model for tuning classification-rule structures. Informatsiini Tekhnolohii ta Kompiuterna Inzheneriia, 34(3), 94–99. https://itce.vntu.edu.ua/article/view/214

Dmytriienko, K. O., & Korshun, N. I. (2025). Application of improved Kuramoto models for disinformation identification in social networks. Cyberbezpeka: Osvita, Nauka, Tekhnika, 3(27). https://doi.org/10.28925/2663-4023.2025.27.754

Lavrov, V. V., & Dudatiev, A. V. (2025). Review of existing methods for assessing disinformation risks in hybrid warfare. Cyberbezpeka: Osvita, Nauka, Tekhnika, 3(27), 248–256. https://doi.org/10.28925/2663-4023.2025.27.720

Obodiak, V. K., & Shelekhov, I. V. (Eds.). (2021). Modern information technologies in cybersecurity [Monograph]. Sumy State University. https://essuir.sumdu.edu.ua/bitstream/123456789/82619/3/

Obodiak_kiberbezpeka.pdf

Downloads


Abstract views: 0

Published

2025-06-26

How to Cite

Lavrov, V., Dudatyev, A., & Harnaha, V. (2025). NEURO-FUZZY ANFIS SYSTEM FOR ASSESSING THE RISK OF DISINFORMATION UNDER INFORMATION-WARFARE CONDITIONS. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 4(28), 321–333. https://doi.org/10.28925/2663-4023.2025.28.805