NEURO-FUZZY ANFIS SYSTEM FOR ASSESSING THE RISK OF DISINFORMATION UNDER INFORMATION-WARFARE CONDITIONS
DOI:
https://doi.org/10.28925/2663-4023.2025.28.805Keywords:
disinformation risk, neuro-fuzzy system, ANFIS, risk assessment, information warfare, disinformation modelling, information space, cybersecurityAbstract
The article analyses and develops a methodology for using a neuro-fuzzy ANFIS system to assess the risk of disinformation during information warfare. We propose integrating content-based, network and psychological factors to calculate a single risk indicator (RiskScore) for disinformation spread. The model’s input variables include content characteristics (e.g., truthfulness or emotional tone), network metrics (e.g., propagation speed, reproduction number R₀), and audience psychology (trust level, susceptibility to manipulation, etc.). These variables feed an adaptive fuzzy system that applies a rule-based IF-THEN framework to produce a fuzzy logic risk evaluation. The ANFIS architecture can be trained on limited or synthetic data by tuning rule parameters and membership functions to enhance accuracy. The approach demonstrates an ability to combine heterogeneous factors into a unified metric, enabling early detection of potentially dangerous disinformation campaigns. Combining epidemiological indicators (such as R₀) with content-psychological features through fuzzy logic improves the informativeness of risk estimates, especially in information-warfare settings. Deploying an ANFIS-based risk-assessment model can help government and defence bodies prioritise counter-disinformation efforts, outperforming traditional linear models, epidemiological SIR models and classical Mamdani fuzzy systems in flexibility. The results provide a foundation for further model development.
Downloads
References
Guzmán Rincón, A., Barragán Moreno, S., Rodríguez-Canovas, B., & Mondragón-Cardona, A. (2023). Social networks, disinformation and diplomacy: A dynamic model for a current problem. Humanities and Social Sciences Communications, 10(1), 1–14. https://doi.org/10.1057/s41599-023-01998-z
van der Linden, S. (2022). Misinformation: Susceptibility, spread, and interventions to immunize the public. Nature Medicine, 28, 460–467. https://doi.org/10.1038/s41591-022-01713-6
Maleki, M., Mead, E., Arani, M., & Agarwal, N. (2021). Using an epidemiological model to study the spread of misinformation during the Black Lives Matter movement [Preprint]. arXiv. https://arxiv.org/abs/2103.12191
Govindankutty, S., & Gopalan, S. P. (2024). Epidemic modeling for misinformation spread in digital networks through a social intelligence approach. Scientific Reports, 14, 19100. https://doi.org/10.1038/s41598-024-69657-0
Ravichandran, B. D., & Keikhosrokiani, P. (2023). Classification of COVID-19 misinformation on social media based on neuro-fuzzy and neural network: A systematic review. Neural Computing and Applications, 35(1), 699–717. https://doi.org/10.1007/s00521-022-07797-y
Kozhukhivskyi, A. D., & Kozhukhivska, O. A. (2022). Developing a fuzzy risk assessment model for ERP-systems. Radio Electronics, Computer Science, Control, (1), 12. https://doi.org/10.15588/1607-3274-2022-1-12
Adaptive neuro-fuzzy inference system. (n.d.). Wikipedia. https://en.wikipedia.org/wiki/Adaptive_neuro
_fuzzy_inference_system
Pérez-Pérez, E.-J., López-Estrada, F.-R., Puig, V., & Ocampo-Martínez, C. (2022). Fault diagnosis in wind turbines based on ANFIS and Takagi–Sugeno interval observers. Expert Systems with Applications, 206, 117698. https://doi.org/10.1016/j.eswa.2022.117698
Toliupa, S. V., & Kulko, A. A. (2025). Neuro-fuzzy intrusion-detection system for a critical-infrastructure information network. Cyberbezpeka: Osvita, Nauka, Tekhnika, 3(27), 233–247. https://doi.org/10.28925/2663-4023.2025.27.750
Lakhno, V. K., Blozva, A. V., Chasnovskyi, Ye. O., & Biriukov, O. A. (2021). Information security audit based on a neuro-fuzzy system. Technical Sciences and Technologies, (3)(25), 125–137. https://doi.org/10.25140/2411-5363-2021-3(25)-125-137
Malyar, M. M., Polishchuk, A. V., Polishchuk, V. V., & Sharkadi, M. M. (2019). Neuro-fuzzy model for multicriteria evaluation. Radioelektronika, Informatyka, Upravlinnia, (4), 83–91. https://doi.org/10.15588/1607-3274-2019-4-8
Rakytianska, H. B. (2016). Hierarchical neuro-fuzzy inverse-inference model for tuning classification-rule structures. Informatsiini Tekhnolohii ta Kompiuterna Inzheneriia, 34(3), 94–99. https://itce.vntu.edu.ua/article/view/214
Dmytriienko, K. O., & Korshun, N. I. (2025). Application of improved Kuramoto models for disinformation identification in social networks. Cyberbezpeka: Osvita, Nauka, Tekhnika, 3(27). https://doi.org/10.28925/2663-4023.2025.27.754
Lavrov, V. V., & Dudatiev, A. V. (2025). Review of existing methods for assessing disinformation risks in hybrid warfare. Cyberbezpeka: Osvita, Nauka, Tekhnika, 3(27), 248–256. https://doi.org/10.28925/2663-4023.2025.27.720
Obodiak, V. K., & Shelekhov, I. V. (Eds.). (2021). Modern information technologies in cybersecurity [Monograph]. Sumy State University. https://essuir.sumdu.edu.ua/bitstream/123456789/82619/3/
Obodiak_kiberbezpeka.pdf
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Вадим Лавров, Андрій Дудатьєв, Володимир Гарнага

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.