METHODS OF COUNTERACTION IN RADIO NAVIGATION CONFLICTS

Authors

DOI:

https://doi.org/10.28925/2663-4023.2025.28.863

Keywords:

global navigation satellite systems (GNSS); navigation signal; positioning accuracy; user navigation equipment; interference resistance; radionavigation conflict; spoofing; jamming; radio-electronic warfare; counteraction methods; protection methods; CRPA systems

Abstract

Modern radionavigation systems play a critically important role in the functioning of the global economy, transportation, defense, and everyday life. At the same time, the growing dependence on these systems creates new challenges related to their vulnerability to navigation signal jamming, spoofing of radionavigation system signals, and other types of destructive radio-electronic interference. The high dynamics of modern warfare, the development of high-precision strike complexes and systems, the implementation of network-centric automated control systems, and the increasing requirements for the timeliness, accuracy, and reliability of navigation information necessitate the improvement of both navigation support methods and hostile radio-electronic interference techniques. Under these conditions, radionavigation conflicts are among the most pressing threats to modern global navigation satellite systems, and the task of researching counteraction methods in radionavigation conflicts is relevant and necessary for enhancing the resilience of radionavigation systems and national security.The purpose of this publication is to systematize and provide an analytical overview of counteraction methods in radionavigation conflicts to identify promising directions for their development. The main types of intentional interference targeting the equipment of global navigation satellite system users are considered, in particular, the principles of spoofing interference formation; methods for detecting false navigation signals generated by spoofing devices; and protection methods against masking and spoofing interference. It is noted that ensuring effective counteraction in radionavigation conflicts requires continuous improvement of appropriate technologies and strategies, encompassing both technical and organizational aspects.

Downloads

Download data is not yet available.

References

Vasyliev, V. (2023). Radionavihatsiini systemy: Pidruchnyk. KPI im. Ihoria Sikorskoho, Vyd-vo «Politekhnika».

Zubkov, V. (2021). Navihatsiine zabezpechennia yak skladova informatsiinoho zabezpechennia syl oborony Ukrainy. Zbirnyk naukovykh prats Tsentru voienno-stratehichnykh doslidzhen Natsionalnoho universytetu oborony Ukrainy imeni Ivana Cherniakhovskoho, 3(73), 109–115. https://doi.org/10.33099/2304-2745/2021-3-73/109-115

Karlov, D., Korobetskyi, O., & Rieznikov, Yu. (2020). Rekomendatsii shchodo rozrobky zakhyshchenoho vid zavad pryimacha hlobalnykh navihatsiinykh suputnykovykh system dlia vyrishennia zavdan Zbroinykh Syl Ukrainy. Systemy ozbroiennia i viiskova tekhnika, (4), 60-66.

Sholokhov, S., Samborskyi, I., Vakulenko, O., & Nikolaienko, B. (2021). Zavadozakhyst radioelektronnykh zasobiv. Chastyna 1. Osnovy zavadozakhystu system zviazku: Navchalnyi posibnyk. ISZZI KPI im. Ihoria Sikorskoho.

Petrovskyi, A. (2019). Alhorytm vyiavlennia vplyvu spufinhu pid chas vykonavchoi prokladky prohramnymy zasobamy elektronnoi kartohrafichnoi navihatsiino-informatsiinoi systemy. Problemy informatsiinykh tekhnolohii.

Opirskyi, I., & Bybyk, R. (2023). Doslidzhennia suchasnykh metodiv REB ta metodiv i zasobiv yii protydii. Ukrainskyi naukovyi zhurnal informatsiinoi bezpeky, 29(2), 88–97.

Kriuchkova, L., Pshonnik, V., & Zozulia, S. (2019). Syhnaly GPS yak obiekty radiopodavlennia v zadachakh obiektovo-terytorialnoho zakhystu. Suchasnyi zakhyst informatsii, (1), 53–58.

Yarosh, S., & Huriev, D. (2022). Vprovadzhennia spetsyfichnykh sposobiv i zasobiv protydii bezpilotnym litalnym aparatam v uhrupovanni zenitnykh raketnykh viisk. Nauka i tekhnika Povitrianykh Syl Zbroinykh Syl Ukrainy, (2 (47)).

Yang, C., & Soloviev, A. (2023). In-Situ calibration of GPS antenna array with ambient signals. U Proceedings of the 2023 international technical meeting of the institute of navigation (s. 751–769).

Givhan, C. A., & Martin, S. M. (2023). Comparison of CRPA direction of arrival methods on post correlated GNSS signals for solution authentication and spoofing detection. U Proceedings of the 2023 international technical meeting of the institute of navigation (s. 303–314).

Arribas, J., Gómez, M., Fernández-Prades, C., Martín, D., García-Tuñón, J., & Rioja, T. (2023). A receiver-independent GNSS smart antenna for simultaneous jamming and spoofing protection. U 2023 IEEE aerospace conference (s. 1–13).

Esswein, M. (2023). GNSS signal processing techniques for spoofing resiliency [Neopubl. Doctoral dissertation]. Unknown.

Wiggins, G. (2023). Improving CRPA anti-jamming performance with virtual array integration [Neopubl. Master's Thesis]. Unknown.

Pérez-Marcos, E., Cuntz, M., Konovaltsev, A., Kurz, L., Caizzone, S., & Meurer, M. (2023). CRPA and array receivers for civil GNSS applications. U 2023 IEEE/ION position, location and navigation symposium (PLANS) (s. 318–328).

Yang, C., & Soloviev, A. (2023). Self-Contained implementation of nullsteering and beamforming with a standalone antenna array for GNSS signals under interference. U 2023 IEEE/ION position, location and navigation symposium (PLANS) (s. 917–934).

Liu, J., Chen, F., Xie, Y., Ge, B., Lu, Z., & Sun, G. (2023). Robust spoofing detection for GNSS array instrumentation based on C/N0 difference measurements. IEEE Transactions on Instrumentation and Measurement, 72, 1–11.

Madni, A., & Khan, W. (2023). Design of a compact 4-element GNSS antenna array with high isolation using a defected ground structure (DGS) and a microwave absorber. IEEE Open Journal of Antennas and Propagation, 4, 779–791.

Santarelli, K., & Lan, W. (2023). Coherent global positioning system signal interference detection and mitigation [Neopubl. Master's Thesis].

BniLam, N., Principe, F., & Crosta, P. (2023). Large array antenna aperture for GNSS applications. IEEE Transactions on Aerospace and Electronic Systems.

Zhang, Z., Zhan, X., & Zhang, Y. (2017). GNSS spoofing localization based on differential code phase. U Proc. Forum Cooperat. Positioning Service (CPGPS) (s. 338–344).

What is spread spectrum and its impact on GNSS/GPS antennas? . (date of acceses 08.06.2025)

Movchan, K. (2024). Suchasni stratehii navihatsii droniv u vypadkakh vidsutnosti GPS syhnalu. Vcheni zapysky TNU imeni V.I. Vernadskoho. Seriia: Tekhnichni nauky, 35 (74)(5).

Magiera, J., & Katulski, R. (2019). Detection and mitigation of GPS spoofing based on antenna array processing. Journal of Applied Research and Technology, 13(1), 45–57.

Wu, R., Wang, W., Lu, D., Wang, L., & Jia, Q. (2017). Adaptive interference mitigation of GNSS. Navigation: Science and Technology.

Semanjski, S., Semanjski, I., Wilde, W., & Gautama, S. (2020). Use of supervised machine learning for GNSS signal spoofing detection with validation on realworld meaconing and spoofing data – Part II. Sensors, 20(7), 1806.

Jafarnia-Jahromi, A., Broumandan, A., Nielsen, J., & Lachapelle, G. (2012). GPS vulnerability to spoofing threats and a review of antispoofing techniques. International Journal of Navigation and Observation.

Guo, Y., Miao, L., & Zhang, X. (2018). Spoofing detection and mitigation in a multi-correlator GPS receiver based on the maximum likelihood principle. Sensors (basel), 19(1), 37. https://doi.org/10.3390/s19010037

Downloads


Abstract views: 0

Published

2025-06-26

How to Cite

Kriuchkova, L., & Shandruk , M. (2025). METHODS OF COUNTERACTION IN RADIO NAVIGATION CONFLICTS. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 4(28), 766–780. https://doi.org/10.28925/2663-4023.2025.28.863

Most read articles by the same author(s)