FORMATION OF A DATASET OF CRYPTOGRAPHIC ALGORITHMS FOR ENSURING DATA CONFIDENTIALITY TRANSFERRED FROM RECONNAISSANCE AND SEARCH UAV
DOI:
https://doi.org/10.28925/2663-4023.2023.20.205219Abstract
The rapid development of unmanned aerial vehicles (UAV) has significantly changed the conduct of military operations and warfare strategies, offering numerous advantages in terms of intelligence, surveillance and combat capabilities. The use of UAV in the military sphere provides more complete situational awareness, operational efficiency and reduces risks to personnel. In addition, in the field of intelligence and surveillance, UAV have revolutionized the context of intelligence gathering. Equipped with the latest image processing systems, sensors and high-resolution cameras, they can conduct real-time aerial photography, monitor enemy activity and gather critical intelligence without putting the military at risk. UAV make it possible to conduct long-term operations in conditions of secrecy, providing commanders with valuable information for making strategic decisions. However, the issue of ensuring the confidentiality of critical data collected using UAV remains unresolved. With this in mind, in this paper universal dataset of cryptographic algorithms was created, it uses a neural network to select the optimal encryption algorithm. To form such a dataset, it was necessary to evaluate the speed of the crypto algorithms, their cryptographic security and other parameters. The developed dataset in synthesis with a neural network can be used to select the optimal crypto algorithm depending on the operating conditions. In further research, the authors plan to determine the criteria for using the generated dataset by neural networks and develop a knowledge base for neural network training.
Downloads
References
Du, X., Tang, Y., Gou, Y., & Huang, Z. (2021). Data Processing and Encryption in UAV Radar. У 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE. https://doi.org/10.1109/imcec51613.2021.9482373.
Hnatiuk, S., Kinzeriavyi, V., Polishchuk, Yu. (2022). Analiz metodiv zabezpechennia konfidentsiinosti danykh, yaki peredaiutsia z BPLA. Kiberbezpeka: osvita, nauka, tekhnika, 1(17), 167-186.
Dong, T., & Huang, T. (2020). Neural Cryptography Based on Complex-Valued Neural Network. IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4999–5004. https://doi.org/10.1109/tnnls.2019.2955165.
Jhajharia, S., Mishra, S., & Bali, S. (2013). Public key cryptography using neural networks and genetic algorithms. У 2013 Sixth International Conference on Contemporary Computing (IC3). IEEE. https://doi.org/10.1109/ic3.2013.6612177.
Xiao, Y., Hao, Q., & Yao, D. D. (2019). Neural Cryptanalysis: Metrics, Methodology, and Applications in CPS Ciphers. У 2019 IEEE Conference on Dependable and Secure Computing (DSC). IEEE. https://doi.org/10.1109/dsc47296.2019.8937659.
Niemiec, M., Mehic, M., & Voznak, M. (2018). Security Verification of Artificial Neural Networks Used to Error Correction in Quantum Cryptography. У 2018 26th Telecommunications Forum (TELFOR). IEEE. https://doi.org/10.1109/telfor.2018.8612006.
Das, G., & Kule, M. (2022). A New Error Correction Technique in Quantum Cryptography using Artificial Neural Networks. У 2022 IEEE 19th India Council International Conference (INDICON). IEEE. https://doi.org/10.1109/indicon56171.2022.10040091.
Schmidt, T., Rahnama, H., Sadeghian, A. (2008). A review of applications of artificial neural networks in cryptosystems, World Automation Congress. Waikoloa, HI.
Bernstein, D. J. (б. д.). The Salsa20 Family of Stream Ciphers. У Lecture Notes in Computer Science (с. 84–97). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-68351-3_8.
Wu, H. (2004). A New Stream Cipher HC-256. У Fast Software Encryption (с. 226–244). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-25937-4_15.
Kelsey, J., Kohno, T., & Schneier, B. (2001). Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent. У Fast Software Encryption (с. 75–93). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44706-7_6.
Ferguson, N., Hall, C., Kelsey, J., Wagner, D., Whiting, D., & Schneier, B. (1999). The Twofish Encryption Algorithm: A 128-Bit Block Cipher. Wiley.
Gonzalez, T. (2007). A reflection attack on Blowfish. http://karbalus.free.fr/sat/docsat/PaperGonzalezTom.pdf.
Kara, O., & Manap, C. (б. д.). A New Class of Weak Keys for Blowfish. У Fast Software Encryption (с. 167–180). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74619-5_11.
Anderson, R., Biham, E., Knudsen, L. (2000). Serpent: A Proposal for the Advanced Encryption Standard. https://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
DSTU 7624:2014 «Informatsiini tekhnolohii. Kryptohrafichnyi zakhyst informatsii. Alhorytm symetrychnoho blokovoho peretvorennia». http://online.budstandart.com/ua/catalog/doc-page?id_doc=65314
Bhadeshia, H. K. (1999). Neural Networks in Materials Science. ISIJ International, 39(10), 966-979.
Thakur, J., Kumar, N. (2011). DES, AES and Blowfish: Symmetric Key Cryptography Algorithms Simulation Based Performance Analysis. International Journal of Emerging Technology and Advanced Engineering, 1(2), 6-12.
Panama Stream cipher. http://nightcrowlwing.blogspot.com/2012/10/panama-stream-cipher.html
Sovyn, Ya., Khoma, V., Nakonechnyi, Yu., Stakhiv, M. (2019). Efektyvna implementatsiia ta porivniannia shvydkodii shyfriv «Kalyna» ta HOST 28147-89 za vykorystannia vektornykh rozshyren SSE, AVX ta AVX-512. Zakhyst informatsii, 21(4), 207-223. https://doi.org/10.18372/24107840.21.14266
RC2. Block cipher with symmetric secret key. (2020). http://www.crypto-it.net/eng/symmetric/rc2.html
NIST. Advanced Encryption Standard (AES). (2021). https://csrc.nist.gov/publications/detail/fips/197/final
Davis, R. (1978). The data encryption standard in perspective. IEEE Communications Society Magazine, 16(6), 5-9. https://doi.org/10.1109/MCOM.1978.1089771
Haykin, S. (1999). Neural Networks: A Comprehensive Foundation. The Knowledge Engineering Review, 13(4), 409-412.
Juracy, L.R., Garibotti, R., Moraes, F.G. (2023). From CNN to DNN Hardware Accelerators: A Survey on Design. Exploration, Simulation, and Frameworks.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Сергій Гнатюк, Юлія Поліщук, Василь Кінзерявий, Богдан Горбаха, Дмитро Проскурін
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.