IMPLEMENTATION OF THE COMPUTATIONAL CORE OF AN INTELLIGENT INTERNAL AUDIT SUPPORT SYSTEM

Authors

DOI:

https://doi.org/10.28925/2663-4023.2025.28.781793

Keywords:

intelligent systems; internal audit; software architecture; information systems; data processing; logistic regression; XGBoost; REST API; decision support.

Abstract

The integration of Ukrainian enterprises into the European economic space, the attraction of foreign investments, and the reform of accounting and management policies require domestic business entities to ensure a high level of transparency and control. However, a significant number of Ukrainian enterprises still rely on outdated internal control tools. These limitations hinder the detection of hidden risks, the evaluation of management efficiency, and the timely formulation of managerial decisions. This article presents the results of a study aimed at detailing the architecture of an intelligent internal audit support system (IIASS) for business entities. Based on an analysis of the system's functional requirements, three levels of architectural modeling are proposed: a high-level component structure, a detailed transactional data processing scheme, and an integration schema with corporate systems. The proposed computational core structure includes modules for preprocessing, normalization, and feature generation, as well as the implementation of ensemble forecasting models based on logistic regression and XGBoost. Special attention is given to input data validation and the automatic retraining of models when significant deviations in feature structure are detected. The developed API integration mechanism with external systems (CRM, ERP, document management) is based on REST architecture principles and includes authentication methods such as OAuth 2.0. The proposed architecture ensures flexibility, scalability, and interpretability of decision support processes in auditing. The obtained results may serve as a methodological foundation for the practical implementation of intelligent audit systems in corporate environments.

Downloads

Download data is not yet available.

References

Hnatchenko, D. D. (2023). Modeliuvannia intelektualnoi systemy pidtrymky vnutrishnoho audytu subiekta hospodariuvannia. Upravlinnia rozvytkom skladnykh system. Kyiv, (54), 114–121 https://doi.org/10.32347/2412-9933.2023.54.114-121

Kryvoruchko, Olena. "Funktsionalni osoblyvosti intelektualnoi systemy vnutrishnoho audytu." Elektronne fakhove naukove vydannia «Kiberbezpeka: osvita, nauka, tekhnika» 4.24 (2024): 40–49. https://doi.org/10.28925/2663-4023.2024.24.4049

Demianenko, T. Ye. (2016). Teoretychni aspekty pohlyblennia sutnosti vnutrishnoho audytu. Oblik i finansy, (3), 122–127. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Vonu_econ_2013_18_1_10

Dotsenko, I. O. (2013). Formation of a system for assessing the level of economic security of an enterprise taking into account the impact of entrepreneurial risks. Bulletin of the Odessa National University. Economics, (18, Issue 1), 69-78. http://www.economy.nayka.com.ua/?op=1&z=5953

Adamenko, M. I., Berezutskyi, V. V., Kuchuk, N. H., Palant, O. Yu. (2015). Zahalnosystemnyi ryzyk vidmovy systemy pislia modernizatsii. Systemy obrobky informatsii, (10), 159–162. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=soi_2015_10_36

Odrekhivskyy, M., Darmits, R., & Zhezhukha, V. (2022). INTELLECTUAL INFORMATION SYSTEMS FOR MONITORING THE COMPETENCES OF MANAGERS OF INNOVATIVE ENTERPRISES. Financial and Credit Activity Problems of Theory and Practice, 5(46), 222–238. https://doi.org/10.55643/fcaptp.5.46.2022.3884

Loi, A. V. (2023). Identyfikatsiia ryzykiv formuvannia ekonomichnoho potentsialu pidpryiemstva torhivli. Aktual'ni Problemy Ekonomiky = Actual Problems in Economics, (265), 47–56.

Huang, J. C., Tsai, Y. C., Wu, P. Y., Lien, Y. H., Chien, C. Y., Kuo, C. F., & Kuo, C. H. (2020). Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Computer methods and programs in biomedicine, 195, 105536. DOI:10.1016/j.cmpb.2020.105536

Fatima, S., Hussain, A., Amir, S. B., Ahmed, S. H., & Aslam, S. M. H. (2023). XGBoost and random forest algorithms: an in depth analysis. Pakistan Journal of Scientific Research, 3(1), 26-31. DOI:10.57041/pjosr.v3i1.946

Demyanenko, T. Ye. (2016). Theoretical aspects of deepening the essence of internal audit. Accounting and Finance, (3), 122-127. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Vonu_econ_2013_18_1_10

Pererva, P., Maslak, O., Kobieleva, T., Kuchynskyi, V., Illiashenko, S. (2021). Efektyvnist informatsiinykh tekhnolohii v upravlinni intelektualnoiu vlasnistiu promyslovoho pidpryiemstva. Visnyk Natsionalnoho tekhnichnoho universytetu "Kharkivskyi politekhnichnyi instytut" (ekonomichni nauky), (1), 53–58. https://doi.org/10.20998/2519-4461.2021.1.53

Chornohus, H. O. (2016). Ahentna model intelektualnoi informatsiinoi systemy upravlinnia v ekonomitsi. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Ekonomika, (1), 41–47. http://dx.doi.org/10.17721/1728-2667.2016/178-1/7

Downloads


Abstract views: 30

Published

2025-06-26

How to Cite

Hnatchenko, D., & Desiatko, A. (2025). IMPLEMENTATION OF THE COMPUTATIONAL CORE OF AN INTELLIGENT INTERNAL AUDIT SUPPORT SYSTEM. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 4(28), 781–793. https://doi.org/10.28925/2663-4023.2025.28.781793

Most read articles by the same author(s)

1 2 > >>