MATHEMATICAL METHODS IN CYBERSECURITY: CATASTROPHE THEORY

Authors

DOI:

https://doi.org/10.28925/2663-4023.2023.19.165175

Keywords:

cybersecurity systems; information protection; dynamic models; mathematical methods; catastrophe theory; bifurcation; attractors; elementary catastrophes

Abstract

The improvement of protection systems is based on the introduction and use of a mathematical apparatus. Ensuring the confidentiality, integrity and availability of information is an urgent and important problem in the modern world. Crisis processes are characteristic phenomena in security systems, so stochastic models cannot always describe their functioning and give a solution. An effective tool for solving this problem can be the use of dynamic models based on the provisions of catastrophe theory.

This study is devoted to the analysis of modern approaches to the use of the basic provisions of catastrophe theory in cybersecurity systems. The work presents a brief historical view of the development of this theory and highlights the main definitions: bifurcations, attractors, catastrophes. Elementary catastrophes, their forms and features are characterized. A review of the literary sources of the use of catastrophe theory in information and cyber security was carried out. The analysis made it possible to single out that this theory has not yet been widely implemented, but there are point scientific developments in the process of detecting network anomalies in the cloud environment.

The considered approaches to the application of catastrophe theory in information and cyber security can be used to train specialists in the specialty 125 Cybersecurity in the process of research

Downloads

Download data is not yet available.

References

Shevchenko, S., Zhdanova, Y., Spasiteleva, S., Negodenko, O., Mazur, N., Kravchuk, K. (2019). MATHEMATICAL METHODS IN CYBER SECURITY: FRACTALS AND THEIR APPLICATIONS IN INFORMATION AND CYBER SECURITY. Cybersecurity: Education, Science, Technique, (5), 31–39. https://doi.org/10.28925/2663-4023.2019.5.3139.

Shevchenko, S.M., Zhdanova, Yu.D., Skladannyi, P.M., Spasitielieva, S.O. (2021). Matematychni metody v kiberbezpetsi: hrafy ta yikh zastosuvannia v informatsiinii ta kibernetychnii bezpetsi. Kiberbezpeka: osvita, nauka, tekhnika, 1(13), 133-144.

Shevchenko, S.M., Zhdanova, Yu.D., Kravchuk, K.V. (2021). Model zakhystu informatsii na osnovi otsinky ryzykiv informatsiinoi bezpeky dlia maloho ta serednoho biznesu. Kiberbezpeka: osvita, nauka, tekhnika, 2(14), 158-175.

Shevchenko, H., Shevchenko, S., Zhdanova, Yu., Spasiteleva, S., Negodenko, O. (2021). Information Security Risk Analysis SWOT. CEUR Workshop Proceedings, 2923, 309-317.

Negodenko, O., Shevchenko, S., Trintina, N., Astapenya, V., Tereshchenko, O. (2021). Problematic Issues of Approximation and Interpolation in Signal Processing in Secure Information Systems. CEUR Workshop Proceedings, 3187(1), 276-283.

Shevchenko, S.M., Skladannyi, P.M., Nehodenko, O.V., Nehodenko, V.P. (2022). Doslidzhennia prykladnykh aspektiv teorii konfliktiv u systemakh bezpeky. Kiberbezpeka: osvita, nauka, tekhnika, 2(18), 150-162.

Lysenko, N. O., Mazurenko, V. B,. Fedorovych, A. I., Astakhov, D. S., Statsenko, V. I. (2021). Ohliad matematychnykh metodiv u systemakh vyiavlennia ta poperedzhennia kiberzahroz. Aktualni problemy avtomatyzatsii ta informatsiinykh tekhnolohii, 25, 91-102.

Haken, H. (2009). Synergetics: Basic Concepts. U Encyclopedia of Complexity and Systems Science (s. 8926–8946). Springer New York. https://doi.org/10.1007/978-0-387-30440-3_533

Arnold, V. I. (2012). Catastrophe Theory. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-96937-9

Arnold, V. I., Davydov, A. A., Vassiliev, V. A., Zakalyukin, V. M. (2006). Mathematical Models of Catastrophes. Control of Catastrophic Processes. Encyclopedia of Life Support Systems (EOLSS), EOLSS Publishers, Oxford. https://pure.iiasa.ac.at/8095/1/RP-06-007.pdf

Tom, R. (1977). Structural stability, catastrophe theory, and applied mathematics. SIAM Review, 19(2), 189–201.

Robbin, J. W. (2013). Toms catastrophe theory and Zeemans model of the stock market. Chaos and Complexity Seminar.

Qin, S., Jimmy Jiao, J., Wang, S., Long, H. (2001). A nonlinear catastrophe model of instability of planar-slip slope and chaotic dynamical mechanisms of its evolutionary process. International Journal of Solids and Structures, 38(44-45), 8093–8109. https://doi.org/10.1016/s0020-7683(01)00060-9.

Zeeman, E. C. (1976). Catastrophe theory. Scientifc American, 234(4), 65–83.

Wagenmakers, E.-J., Molenaar, P. C. M., Grasman, R. P. P. P., Hartelman, P. A. I., & van der Maas, H. L. J. (2005). Transformation invariant stochastic catastrophe theory. Physica D: Nonlinear Phenomena, 211(3-4), 263–276. https://doi.org/10.1016/j.physd.2005.08.014

Angelis, V., Dimaki, K. (2012). A banks attractiveness as described by a cusp catastrophe model. In 25th European Conference on Operational Research. Vilnius. https://www.researchgate.net/publication/340941439_A_Banks_Attractiveness_as_described_by_a_Cusp_Catastrophe_Model

Khliestova, O.A., Yelistratova, N.Iu., Kalianov, A.V., Volkov, D.V. (2020). Vykorystannia matematychnoi teorii katastrof u promyslovii ekolohii. Ekolohichni nauky, 3(30), 15-19. http://ecoj.dea.kiev.ua/30-2020

Koliada, M.H. (2010). Vykorystannia teorii katastrof dlia vyznachennia optymalnoi kilkosti kompetentnostei maibutnoho fakhivtsia sfery informatsiinoi bezpeky. Naukovyi visnyk Donbasu, 1. http://nbuv.gov.ua/UJRN/nvd_2010_1_5

Stamovlasis, D. (2016). Catastrophe Theory: Methodology, Epistemology, and Applications in Learning Science. U Complex Dynamical Systems in Education (s. 141–175). Springer International Publishing. https://doi.org/10.1007/978-3-319-27577-2_9

Isnard, C. A., Zeeman, E. C. (2020). Some models from catastrophe theory in the social sciences. The Use Of Models in Social Sciences, Taylor & Francis.

Liu, J., Bao, J., Yin, Y., & Yang, S. (2015). Applications of Catastrophe Theory in Engineering: A Review. Journal of Computational and Theoretical Nanoscience, 12(12), 5739–5744. https://doi.org/10.1166/jctn.2015.4710

Lin, J., Yang, X., Long, K., & Peng, Y. (2008). Catastrophe model construction and verification for network anomaly detection. U W. Hu, S.-K. Liu, K.-i. Sato & L. Wosinska (Red.), Asia Pacific Optical Communications. SPIE. https://doi.org/10.1117/12.804305.

Xiong, W., Xiong, N., Yang, L. T., Vasilakos, A. V., Wang, Q., & Hu, H. (2010). Network traffic anomaly detection based on catastrophe theory. U 2010 Ieee Globecom Workshops. IEEE. https://doi.org/10.1109/glocomw.2010.5700309.

Xiong, W., Xiong, N., Yang, L. T., Park, J. H., Hu, H., & Wang, Q. (2011). An anomaly-based detection in ubiquitous network using the equilibrium state of the catastrophe theory. The Journal of Supercomputing, 64(2), 274–294. https://doi.org/10.1007/s11227-011-0644-y.

Khatibzadeh, L., Bornaee, Z., Bafgh, A.G. (2019). Applying Catastrophe Theory for Network Anomaly Detection in Cloud Computing Traffic. Security and Communication Networks. https://doi.org/10.1155/2019/5306395

Velykyi tlumachnyi slovnyk (VTS) suchasnoi ukrainskoi movy. http://slovopedia.org.ua/53/53410/363176.html

Millard, E. (2005). Internet attacks increase in number, severity. Top Tech News.

Mokin, B. I., Voitsekhovska, O. O. (2022). Pro deiaki naslidky nekorektnoho zastosuvannia v prykladnykh doslidzhenniakh matematychnoi teorii katastrof. U Materialy mizhnarodnoi naukovo-metodychnoi Internet–konferentsii «Problemy vyshchoi matematychnoi osvity: vyklyky suchasnosti», Vinnytsia, 2022. https://conferences.vntu.edu.ua/index.php/pmovc/pmovc22/paper/view/16291

Downloads


Abstract views: 405

Published

2023-03-30

How to Cite

Shevchenko, S., Zhdanovа Y. ., & Spasiteleva, S. (2023). MATHEMATICAL METHODS IN CYBERSECURITY: CATASTROPHE THEORY. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 3(19), 165–175. https://doi.org/10.28925/2663-4023.2023.19.165175

Most read articles by the same author(s)

1 2 3 > >>